Jimin Hwang, Neil Bose, Gina Millar, Craig Bulger, Ginelle Nazareth
{"title":"在自主水下航行器上使用后座驾驶员进行气泡羽流跟踪","authors":"Jimin Hwang, Neil Bose, Gina Millar, Craig Bulger, Ginelle Nazareth","doi":"10.3390/drones7100635","DOIUrl":null,"url":null,"abstract":"Autonomous underwater vehicles (AUVs) have been applied in various scientific missions including oceanographic research, bathymetry studies, sea mine detection, and marine pollution tracking. We have designed and field-tested in the ocean a backseat driver autonomous system for a 5.5 m survey-class Explorer AUV to detect and track a mixed-phase oil plume. While the first driver is responsible for controlling and safely operating the vehicle; the second driver processes real-time data surrounding the vehicle based on in situ sensor measurements and adaptively modifies the mission details. This adaptive sensing and tracking method uses the Gaussian blur and occupancy grid method. Using a large bubble plume as a proxy, our approach enables real-time adaptive modifications to the AUV’s mission details, and field tests show successful plume detection and tracking. Our results provide for remote detection of underwater oil plumes and enhanced autonomy with these large AUVs.","PeriodicalId":36448,"journal":{"name":"Drones","volume":"28 1","pages":"0"},"PeriodicalIF":4.4000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bubble Plume Tracking Using a Backseat Driver on an Autonomous Underwater Vehicle\",\"authors\":\"Jimin Hwang, Neil Bose, Gina Millar, Craig Bulger, Ginelle Nazareth\",\"doi\":\"10.3390/drones7100635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Autonomous underwater vehicles (AUVs) have been applied in various scientific missions including oceanographic research, bathymetry studies, sea mine detection, and marine pollution tracking. We have designed and field-tested in the ocean a backseat driver autonomous system for a 5.5 m survey-class Explorer AUV to detect and track a mixed-phase oil plume. While the first driver is responsible for controlling and safely operating the vehicle; the second driver processes real-time data surrounding the vehicle based on in situ sensor measurements and adaptively modifies the mission details. This adaptive sensing and tracking method uses the Gaussian blur and occupancy grid method. Using a large bubble plume as a proxy, our approach enables real-time adaptive modifications to the AUV’s mission details, and field tests show successful plume detection and tracking. Our results provide for remote detection of underwater oil plumes and enhanced autonomy with these large AUVs.\",\"PeriodicalId\":36448,\"journal\":{\"name\":\"Drones\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2023-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drones\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/drones7100635\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drones","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/drones7100635","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REMOTE SENSING","Score":null,"Total":0}
Bubble Plume Tracking Using a Backseat Driver on an Autonomous Underwater Vehicle
Autonomous underwater vehicles (AUVs) have been applied in various scientific missions including oceanographic research, bathymetry studies, sea mine detection, and marine pollution tracking. We have designed and field-tested in the ocean a backseat driver autonomous system for a 5.5 m survey-class Explorer AUV to detect and track a mixed-phase oil plume. While the first driver is responsible for controlling and safely operating the vehicle; the second driver processes real-time data surrounding the vehicle based on in situ sensor measurements and adaptively modifies the mission details. This adaptive sensing and tracking method uses the Gaussian blur and occupancy grid method. Using a large bubble plume as a proxy, our approach enables real-time adaptive modifications to the AUV’s mission details, and field tests show successful plume detection and tracking. Our results provide for remote detection of underwater oil plumes and enhanced autonomy with these large AUVs.