{"title":"水产养殖中水下物种识别的改进深度学习模型","authors":"Mahdi Hamzaoui, Mohamed Ould-Elhassen Aoueileyine, Lamia Romdhani, Ridha Bouallegue","doi":"10.3390/fishes8100514","DOIUrl":null,"url":null,"abstract":"The ability to differentiate between various fish species plays an essential role in aquaculture. It helps to protect their populations and monitor their health situations and their nutrient systems. However, old machine learning methods are unable to detect objects in images with complex backgrounds and especially in low-light conditions. This paper aims to improve the performance of a YOLO v5 model for fish recognition and classification. In the context of transfer learning, our improved model FishDETECT uses the pre-trained FishMask model. Then it is tested in various complex scenes. The experimental results show that FishDETECT is more effective than a simple YOLO v5 model. Using the evaluation metrics Precision, Recall, and mAP50, our new model achieved accuracy rates of 0.962, 0.978, and 0.995, respectively.","PeriodicalId":12405,"journal":{"name":"Fishes","volume":"43 1","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Improved Deep Learning Model for Underwater Species Recognition in Aquaculture\",\"authors\":\"Mahdi Hamzaoui, Mohamed Ould-Elhassen Aoueileyine, Lamia Romdhani, Ridha Bouallegue\",\"doi\":\"10.3390/fishes8100514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ability to differentiate between various fish species plays an essential role in aquaculture. It helps to protect their populations and monitor their health situations and their nutrient systems. However, old machine learning methods are unable to detect objects in images with complex backgrounds and especially in low-light conditions. This paper aims to improve the performance of a YOLO v5 model for fish recognition and classification. In the context of transfer learning, our improved model FishDETECT uses the pre-trained FishMask model. Then it is tested in various complex scenes. The experimental results show that FishDETECT is more effective than a simple YOLO v5 model. Using the evaluation metrics Precision, Recall, and mAP50, our new model achieved accuracy rates of 0.962, 0.978, and 0.995, respectively.\",\"PeriodicalId\":12405,\"journal\":{\"name\":\"Fishes\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fishes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fishes8100514\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FISHERIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fishes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fishes8100514","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FISHERIES","Score":null,"Total":0}
An Improved Deep Learning Model for Underwater Species Recognition in Aquaculture
The ability to differentiate between various fish species plays an essential role in aquaculture. It helps to protect their populations and monitor their health situations and their nutrient systems. However, old machine learning methods are unable to detect objects in images with complex backgrounds and especially in low-light conditions. This paper aims to improve the performance of a YOLO v5 model for fish recognition and classification. In the context of transfer learning, our improved model FishDETECT uses the pre-trained FishMask model. Then it is tested in various complex scenes. The experimental results show that FishDETECT is more effective than a simple YOLO v5 model. Using the evaluation metrics Precision, Recall, and mAP50, our new model achieved accuracy rates of 0.962, 0.978, and 0.995, respectively.