{"title":"海藻酸钠/富血小板血浆sr 2+多孔微载体的体外降解行为和生物相容性","authors":"Jinxing Chen, Zhihua Zhou, Wei Wu, Wenjuan Liu, Zemei Fang, Yan Gan, Jianjun Fang","doi":"10.1080/00222348.2023.2267365","DOIUrl":null,"url":null,"abstract":"AbstractPorous microcarriers as cell carriers have attracted extensive research interest in tissue engineering. In this work sodium alginate (SA) and sodium alginate/platelet-rich plasma (SA/PRP) porous microcarriers cross-linked by SrCl2 (SA-Sr2+ and SA/PRP-Sr2+) were prepared using an emulsion method combined with a freeze-drying method. The in-vitro degradation behaviors of the SA-Sr2+ and SA/PRP-Sr2+ porous microcarriers in phosphate-buffered saline (PBS) were investigated. The cell proliferation ability and osteogenic activity of the SA-Sr2+ and SA/PRP-Sr2+ porous microcarriers were investigated by culturing rat bone marrow mesenchymal stem cells (rBMSCs). During the degradation process, the degradation behaviors, including changes of the pH of the PBS and the weight loss and morphology, of both the SA-Sr2+ and SA/PRP-Sr2+ porous microcarriers showed a similar change. After 6 weeks of degradation, parts of both the SA-Sr2+ and SA/PRP-Sr2+ porous microcarriers collapsed. The SA/PRP-Sr2+ porous microcarriers showed higher cell proliferation ability and osteoinductive ability than the SA-Sr2+ porous microcarriers during a culture time of 14 days.Keywords: sodium alginateplatelet-rich plasmaporous microcarriersin-vitro degradationbiocmpatibilityDisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also. AcknowledgementsThis work was financially supported by the Scientific Research Fund of the Hunan Provincial Education Department (No. 21A0323) and the National Experimental Teaching Demonstration Center of Chemical Engineering and Materials.","PeriodicalId":16285,"journal":{"name":"Journal of Macromolecular Science, Part B","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In-Vitro Degradation Behaviors and Biocompatibility of Sodium Alginate/Platelet-Rich Plasma-Sr <sup>2+</sup> Porous Microcarriers\",\"authors\":\"Jinxing Chen, Zhihua Zhou, Wei Wu, Wenjuan Liu, Zemei Fang, Yan Gan, Jianjun Fang\",\"doi\":\"10.1080/00222348.2023.2267365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractPorous microcarriers as cell carriers have attracted extensive research interest in tissue engineering. In this work sodium alginate (SA) and sodium alginate/platelet-rich plasma (SA/PRP) porous microcarriers cross-linked by SrCl2 (SA-Sr2+ and SA/PRP-Sr2+) were prepared using an emulsion method combined with a freeze-drying method. The in-vitro degradation behaviors of the SA-Sr2+ and SA/PRP-Sr2+ porous microcarriers in phosphate-buffered saline (PBS) were investigated. The cell proliferation ability and osteogenic activity of the SA-Sr2+ and SA/PRP-Sr2+ porous microcarriers were investigated by culturing rat bone marrow mesenchymal stem cells (rBMSCs). During the degradation process, the degradation behaviors, including changes of the pH of the PBS and the weight loss and morphology, of both the SA-Sr2+ and SA/PRP-Sr2+ porous microcarriers showed a similar change. After 6 weeks of degradation, parts of both the SA-Sr2+ and SA/PRP-Sr2+ porous microcarriers collapsed. The SA/PRP-Sr2+ porous microcarriers showed higher cell proliferation ability and osteoinductive ability than the SA-Sr2+ porous microcarriers during a culture time of 14 days.Keywords: sodium alginateplatelet-rich plasmaporous microcarriersin-vitro degradationbiocmpatibilityDisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also. AcknowledgementsThis work was financially supported by the Scientific Research Fund of the Hunan Provincial Education Department (No. 21A0323) and the National Experimental Teaching Demonstration Center of Chemical Engineering and Materials.\",\"PeriodicalId\":16285,\"journal\":{\"name\":\"Journal of Macromolecular Science, Part B\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Macromolecular Science, Part B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/00222348.2023.2267365\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Macromolecular Science, Part B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00222348.2023.2267365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In-Vitro Degradation Behaviors and Biocompatibility of Sodium Alginate/Platelet-Rich Plasma-Sr 2+ Porous Microcarriers
AbstractPorous microcarriers as cell carriers have attracted extensive research interest in tissue engineering. In this work sodium alginate (SA) and sodium alginate/platelet-rich plasma (SA/PRP) porous microcarriers cross-linked by SrCl2 (SA-Sr2+ and SA/PRP-Sr2+) were prepared using an emulsion method combined with a freeze-drying method. The in-vitro degradation behaviors of the SA-Sr2+ and SA/PRP-Sr2+ porous microcarriers in phosphate-buffered saline (PBS) were investigated. The cell proliferation ability and osteogenic activity of the SA-Sr2+ and SA/PRP-Sr2+ porous microcarriers were investigated by culturing rat bone marrow mesenchymal stem cells (rBMSCs). During the degradation process, the degradation behaviors, including changes of the pH of the PBS and the weight loss and morphology, of both the SA-Sr2+ and SA/PRP-Sr2+ porous microcarriers showed a similar change. After 6 weeks of degradation, parts of both the SA-Sr2+ and SA/PRP-Sr2+ porous microcarriers collapsed. The SA/PRP-Sr2+ porous microcarriers showed higher cell proliferation ability and osteoinductive ability than the SA-Sr2+ porous microcarriers during a culture time of 14 days.Keywords: sodium alginateplatelet-rich plasmaporous microcarriersin-vitro degradationbiocmpatibilityDisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also. AcknowledgementsThis work was financially supported by the Scientific Research Fund of the Hunan Provincial Education Department (No. 21A0323) and the National Experimental Teaching Demonstration Center of Chemical Engineering and Materials.