电磁辐射作为抗病毒治疗,重点是狂犬病暴露后预防

Georgios Dougas
{"title":"电磁辐射作为抗病毒治疗,重点是狂犬病暴露后预防","authors":"Georgios Dougas","doi":"10.3897/rio.9.e107227","DOIUrl":null,"url":null,"abstract":"Shortwave and microwave diathermy devices are commonly used in physical therapy as heating treatment. The rise in temperature occurs due to the flow of electric current in the treated area. Ions are evenly distributed in a predicted pattern from skin to deeper tissues. We hypothesise that the diathermy physiotherapy devices (DPDs) can be repurposed as a means of neutralisation of the Rabies virus (RABV) by exploiting the generated electric charges. In order to minimise the ohmic heating of the tissue, the pulsed output of the diathermy devices is preferred where the ‘on’ time of active energy emission is considerably shorter than the ‘off’ time. RABV proteins mediating cell invasion, cytoplasmic replication and budding, contain polar components that can be adversely affected by non-thermal electric phenomena. Repurposed DPDs can replace the Rabies immunoglobulin (RIG) by targeting the site of inoculation i.e. the area of the animal bite, provided that the delivered electric charges can reduce pathogenicity by altering key viral proteins. The modality is advantageous compared to conventional RIG since it can theoretically neutralise all Lyssavirus species, is not limited by the compartment syndrome, can intercept RABV even after it gains access to the peripheral neural network where conventional post-exposure prophylaxis is ineffective and is cost-effective in the long term. The principle of physical alteration of vulnerable proteins by electricity delivered by electromagnetic radiation is not limited to RABV, but may be applied to a spectrum of viral pathogens.","PeriodicalId":92718,"journal":{"name":"Research ideas and outcomes","volume":"73 12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electromagnetic radiation as antiviral treatment with a focus on Rabies post-exposure prophylaxis\",\"authors\":\"Georgios Dougas\",\"doi\":\"10.3897/rio.9.e107227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Shortwave and microwave diathermy devices are commonly used in physical therapy as heating treatment. The rise in temperature occurs due to the flow of electric current in the treated area. Ions are evenly distributed in a predicted pattern from skin to deeper tissues. We hypothesise that the diathermy physiotherapy devices (DPDs) can be repurposed as a means of neutralisation of the Rabies virus (RABV) by exploiting the generated electric charges. In order to minimise the ohmic heating of the tissue, the pulsed output of the diathermy devices is preferred where the ‘on’ time of active energy emission is considerably shorter than the ‘off’ time. RABV proteins mediating cell invasion, cytoplasmic replication and budding, contain polar components that can be adversely affected by non-thermal electric phenomena. Repurposed DPDs can replace the Rabies immunoglobulin (RIG) by targeting the site of inoculation i.e. the area of the animal bite, provided that the delivered electric charges can reduce pathogenicity by altering key viral proteins. The modality is advantageous compared to conventional RIG since it can theoretically neutralise all Lyssavirus species, is not limited by the compartment syndrome, can intercept RABV even after it gains access to the peripheral neural network where conventional post-exposure prophylaxis is ineffective and is cost-effective in the long term. The principle of physical alteration of vulnerable proteins by electricity delivered by electromagnetic radiation is not limited to RABV, but may be applied to a spectrum of viral pathogens.\",\"PeriodicalId\":92718,\"journal\":{\"name\":\"Research ideas and outcomes\",\"volume\":\"73 12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research ideas and outcomes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3897/rio.9.e107227\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research ideas and outcomes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3897/rio.9.e107227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

短波和微波透热装置通常用于物理治疗作为加热治疗。温度的升高是由于在处理区域的电流流动引起的。离子以可预测的模式从皮肤均匀分布到深层组织。我们假设,透热物理治疗装置(DPDs)可以重新利用产生的电荷作为中和狂犬病病毒(RABV)的手段。为了最大限度地减少组织的欧姆加热,在主动能量发射的“开启”时间比“关闭”时间短得多的情况下,透热装置的脉冲输出是优选的。RABV蛋白介导细胞侵袭、细胞质复制和出芽,含有极性成分,可受到非热电现象的不利影响。重新利用的DPDs可以通过靶向接种部位(即动物咬伤区域)来替代狂犬病免疫球蛋白(RIG),前提是所传递的电荷可以通过改变关键的病毒蛋白来降低致病性。与传统的RIG相比,这种方式是有利的,因为它理论上可以中和所有溶菌病毒,不受室综合征的限制,即使在RABV进入外周神经网络之后也可以拦截RABV,而传统的暴露后预防是无效的,从长远来看是具有成本效益的。电磁辐射传递的电对易感蛋白质的物理改变的原理不仅限于RABV,而且可以应用于病毒病原体的光谱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electromagnetic radiation as antiviral treatment with a focus on Rabies post-exposure prophylaxis
Shortwave and microwave diathermy devices are commonly used in physical therapy as heating treatment. The rise in temperature occurs due to the flow of electric current in the treated area. Ions are evenly distributed in a predicted pattern from skin to deeper tissues. We hypothesise that the diathermy physiotherapy devices (DPDs) can be repurposed as a means of neutralisation of the Rabies virus (RABV) by exploiting the generated electric charges. In order to minimise the ohmic heating of the tissue, the pulsed output of the diathermy devices is preferred where the ‘on’ time of active energy emission is considerably shorter than the ‘off’ time. RABV proteins mediating cell invasion, cytoplasmic replication and budding, contain polar components that can be adversely affected by non-thermal electric phenomena. Repurposed DPDs can replace the Rabies immunoglobulin (RIG) by targeting the site of inoculation i.e. the area of the animal bite, provided that the delivered electric charges can reduce pathogenicity by altering key viral proteins. The modality is advantageous compared to conventional RIG since it can theoretically neutralise all Lyssavirus species, is not limited by the compartment syndrome, can intercept RABV even after it gains access to the peripheral neural network where conventional post-exposure prophylaxis is ineffective and is cost-effective in the long term. The principle of physical alteration of vulnerable proteins by electricity delivered by electromagnetic radiation is not limited to RABV, but may be applied to a spectrum of viral pathogens.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
2 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信