生命线地震工程的历史方面

Takeshi Koike
{"title":"生命线地震工程的历史方面","authors":"Takeshi Koike","doi":"10.1007/s44285-023-00004-x","DOIUrl":null,"url":null,"abstract":"Abstract This study describes a developing process of lifeline earthquake engineering from historical aspects. Currently various seismic design methods have been furnished for ground shaking and for permanent ground displacement. The seismic design method for ground shaking introduces different travelling wave models in the US and in Japan. As a result, Japanese approach was developed by actively taking into account the slippage effect in order to solve the inelastic response of the pipeline for a severe earthquake. The seismic design method for permanent ground displacement, on the other hand, prepared various numerical modeling and database in the US, while the simplified design formula for ground displacement was furnished in the seismic design guidelines in Japan. The detail design formula for liquefied ground settlement and fault displacement are expressed in this study. Various approaches of the performance-based seismic design method are compared among EU, the US and Japan. Unfortunately, the design method in Japan does not show the safety target in the guidelines. Then a simple evaluation approach to obtain the safety index is proposed herein. The different performance of two actual pipeline systems is compared, in which one pipeline system demonstrated a good performance for 2011 East Japan Great Earthquake, and the other did not. In state-of-the-art study, the seismic experiments and design method of expansion joints are described, because the ultimate limit performance of the expansion joints has not been explicit, although many seismic damages have occurred at the locations of vulnerable expansion joints.","PeriodicalId":471694,"journal":{"name":"Urban Lifeline","volume":"1140 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Historical aspects of lifeline earthquake engineering\",\"authors\":\"Takeshi Koike\",\"doi\":\"10.1007/s44285-023-00004-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This study describes a developing process of lifeline earthquake engineering from historical aspects. Currently various seismic design methods have been furnished for ground shaking and for permanent ground displacement. The seismic design method for ground shaking introduces different travelling wave models in the US and in Japan. As a result, Japanese approach was developed by actively taking into account the slippage effect in order to solve the inelastic response of the pipeline for a severe earthquake. The seismic design method for permanent ground displacement, on the other hand, prepared various numerical modeling and database in the US, while the simplified design formula for ground displacement was furnished in the seismic design guidelines in Japan. The detail design formula for liquefied ground settlement and fault displacement are expressed in this study. Various approaches of the performance-based seismic design method are compared among EU, the US and Japan. Unfortunately, the design method in Japan does not show the safety target in the guidelines. Then a simple evaluation approach to obtain the safety index is proposed herein. The different performance of two actual pipeline systems is compared, in which one pipeline system demonstrated a good performance for 2011 East Japan Great Earthquake, and the other did not. In state-of-the-art study, the seismic experiments and design method of expansion joints are described, because the ultimate limit performance of the expansion joints has not been explicit, although many seismic damages have occurred at the locations of vulnerable expansion joints.\",\"PeriodicalId\":471694,\"journal\":{\"name\":\"Urban Lifeline\",\"volume\":\"1140 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Urban Lifeline\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s44285-023-00004-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Urban Lifeline","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s44285-023-00004-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文从历史的角度描述了生命线地震工程的发展历程。目前针对地震动和永久地位移提出了各种抗震设计方法。地震动的抗震设计方法介绍了美国和日本不同的行波模型。因此,日本的方法是积极考虑滑移效应来解决管道在强震下的非弹性反应。而永久地面位移的地震设计方法,在美国已经准备好了各种数值模拟和数据库,而日本的地震设计指南则提供了简化的地面位移设计公式。本文给出了液化地面沉降和断层位移的详细设计公式。比较了欧盟、美国和日本的各种基于性能的抗震设计方法。不幸的是,日本的设计方法并没有显示出指南中的安全目标。在此基础上,提出了一种简单的安全指标评价方法。比较了两种实际管道系统的不同性能,其中一种管道系统在2011年东日本大地震中表现良好,另一种管道系统表现不佳。目前国内外对伸缩缝的抗震试验和设计方法进行了描述,但在伸缩缝易损处发生了许多地震损伤,但伸缩缝的极限性能并不明确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Historical aspects of lifeline earthquake engineering
Abstract This study describes a developing process of lifeline earthquake engineering from historical aspects. Currently various seismic design methods have been furnished for ground shaking and for permanent ground displacement. The seismic design method for ground shaking introduces different travelling wave models in the US and in Japan. As a result, Japanese approach was developed by actively taking into account the slippage effect in order to solve the inelastic response of the pipeline for a severe earthquake. The seismic design method for permanent ground displacement, on the other hand, prepared various numerical modeling and database in the US, while the simplified design formula for ground displacement was furnished in the seismic design guidelines in Japan. The detail design formula for liquefied ground settlement and fault displacement are expressed in this study. Various approaches of the performance-based seismic design method are compared among EU, the US and Japan. Unfortunately, the design method in Japan does not show the safety target in the guidelines. Then a simple evaluation approach to obtain the safety index is proposed herein. The different performance of two actual pipeline systems is compared, in which one pipeline system demonstrated a good performance for 2011 East Japan Great Earthquake, and the other did not. In state-of-the-art study, the seismic experiments and design method of expansion joints are described, because the ultimate limit performance of the expansion joints has not been explicit, although many seismic damages have occurred at the locations of vulnerable expansion joints.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信