Dawei Chen, Vinay Kerai, Matthew J. Alger, O. Ivy Wong, Cheng Soon Ong
{"title":"无线电银河动物园:使用文本标记无线电主题","authors":"Dawei Chen, Vinay Kerai, Matthew J. Alger, O. Ivy Wong, Cheng Soon Ong","doi":"10.1017/pasa.2023.50","DOIUrl":null,"url":null,"abstract":"Abstract RadioTalk is a communication platform that enabled members of the Radio Galaxy Zoo (RGZ) citizen science project to engage in discussion threads and provide further descriptions of the radio subjects they were observing in the form of tags and comments. It contains a wealth of auxiliary information which is useful for the morphology identification of complex and extended radio sources. In this paper, we present this new dataset, and for the first time in radio astronomy, we combine text and images to automatically classify radio galaxies using a multi-modal learning approach. We found incorporating text features improved classification performance which demonstrates that text annotations are rare but valuable sources of information for classifying astronomical sources, and suggests the importance of exploiting multi-modal information in future citizen science projects. We also discovered over 10,000 new radio sources beyond the RGZ-DR1 catalogue in this dataset.","PeriodicalId":20753,"journal":{"name":"Publications of the Astronomical Society of Australia","volume":"22 1","pages":"0"},"PeriodicalIF":4.5000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Radio Galaxy Zoo: Tagging Radio Subjects using Text\",\"authors\":\"Dawei Chen, Vinay Kerai, Matthew J. Alger, O. Ivy Wong, Cheng Soon Ong\",\"doi\":\"10.1017/pasa.2023.50\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract RadioTalk is a communication platform that enabled members of the Radio Galaxy Zoo (RGZ) citizen science project to engage in discussion threads and provide further descriptions of the radio subjects they were observing in the form of tags and comments. It contains a wealth of auxiliary information which is useful for the morphology identification of complex and extended radio sources. In this paper, we present this new dataset, and for the first time in radio astronomy, we combine text and images to automatically classify radio galaxies using a multi-modal learning approach. We found incorporating text features improved classification performance which demonstrates that text annotations are rare but valuable sources of information for classifying astronomical sources, and suggests the importance of exploiting multi-modal information in future citizen science projects. We also discovered over 10,000 new radio sources beyond the RGZ-DR1 catalogue in this dataset.\",\"PeriodicalId\":20753,\"journal\":{\"name\":\"Publications of the Astronomical Society of Australia\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Publications of the Astronomical Society of Australia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/pasa.2023.50\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications of the Astronomical Society of Australia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/pasa.2023.50","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Radio Galaxy Zoo: Tagging Radio Subjects using Text
Abstract RadioTalk is a communication platform that enabled members of the Radio Galaxy Zoo (RGZ) citizen science project to engage in discussion threads and provide further descriptions of the radio subjects they were observing in the form of tags and comments. It contains a wealth of auxiliary information which is useful for the morphology identification of complex and extended radio sources. In this paper, we present this new dataset, and for the first time in radio astronomy, we combine text and images to automatically classify radio galaxies using a multi-modal learning approach. We found incorporating text features improved classification performance which demonstrates that text annotations are rare but valuable sources of information for classifying astronomical sources, and suggests the importance of exploiting multi-modal information in future citizen science projects. We also discovered over 10,000 new radio sources beyond the RGZ-DR1 catalogue in this dataset.
期刊介绍:
Publications of the Astronomical Society of Australia (PASA) publishes new and significant research in astronomy and astrophysics. PASA covers a wide range of topics within astronomy, including multi-wavelength observations, theoretical modelling, computational astronomy and visualisation. PASA also maintains its heritage of publishing results on southern hemisphere astronomy and on astronomy with Australian facilities.
PASA publishes research papers, review papers and special series on topical issues, making use of expert international reviewers and an experienced Editorial Board. As an electronic-only journal, PASA publishes paper by paper, ensuring a rapid publication rate. There are no page charges. PASA''s Editorial Board approve a certain number of papers per year to be published Open Access without a publication fee.