叶:分离逻辑中临时共享的模块化

IF 2.2 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Travis Hance, Jon Howell, Oded Padon, Bryan Parno
{"title":"叶:分离逻辑中临时共享的模块化","authors":"Travis Hance, Jon Howell, Oded Padon, Bryan Parno","doi":"10.1145/3622798","DOIUrl":null,"url":null,"abstract":"In concurrent verification, separation logic provides a strong story for handling both resources that are owned exclusively and resources that are shared persistently (i.e., forever). However, the situation is more complicated for temporarily shared state, where state might be shared and then later reclaimed as exclusive. We believe that a framework for temporarily-shared state should meet two key goals not adequately met by existing techniques. One, it should allow and encourage users to verify new sharing strategies. Two, it should provide an abstraction where users manipulate shared state in a way agnostic to the means with which it is shared. We present Leaf, a library in the Iris separation logic which accomplishes both of these goals by introducing a novel operator, which we call guarding, that allows one proposition to represent a shared version of another. We demonstrate that Leaf meets these two goals through a modular case study: we verify a reader-writer lock that supports shared state, and a hash table built on top of it that uses shared state.","PeriodicalId":20697,"journal":{"name":"Proceedings of the ACM on Programming Languages","volume":"227 1","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leaf: Modularity for Temporary Sharing in Separation Logic\",\"authors\":\"Travis Hance, Jon Howell, Oded Padon, Bryan Parno\",\"doi\":\"10.1145/3622798\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In concurrent verification, separation logic provides a strong story for handling both resources that are owned exclusively and resources that are shared persistently (i.e., forever). However, the situation is more complicated for temporarily shared state, where state might be shared and then later reclaimed as exclusive. We believe that a framework for temporarily-shared state should meet two key goals not adequately met by existing techniques. One, it should allow and encourage users to verify new sharing strategies. Two, it should provide an abstraction where users manipulate shared state in a way agnostic to the means with which it is shared. We present Leaf, a library in the Iris separation logic which accomplishes both of these goals by introducing a novel operator, which we call guarding, that allows one proposition to represent a shared version of another. We demonstrate that Leaf meets these two goals through a modular case study: we verify a reader-writer lock that supports shared state, and a hash table built on top of it that uses shared state.\",\"PeriodicalId\":20697,\"journal\":{\"name\":\"Proceedings of the ACM on Programming Languages\",\"volume\":\"227 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM on Programming Languages\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3622798\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on Programming Languages","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3622798","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

在并发验证中,分离逻辑为处理独占资源和持久共享(即永远共享)的资源提供了强有力的支持。然而,对于临时共享状态,情况更加复杂,其中状态可能被共享,然后被回收为排他状态。我们认为临时共享状态的框架应该满足现有技术无法充分满足的两个关键目标。首先,它应该允许并鼓励用户验证新的共享策略。第二,它应该提供一个抽象,让用户以一种与共享方式无关的方式操作共享状态。我们介绍了Iris分离逻辑中的一个库Leaf,它通过引入一个新的算子(我们称之为守卫)来实现这两个目标,该算子允许一个命题表示另一个命题的共享版本。我们通过一个模块化的案例研究证明Leaf满足了这两个目标:我们验证了一个支持共享状态的读写锁,以及一个构建在它之上的使用共享状态的散列表。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Leaf: Modularity for Temporary Sharing in Separation Logic
In concurrent verification, separation logic provides a strong story for handling both resources that are owned exclusively and resources that are shared persistently (i.e., forever). However, the situation is more complicated for temporarily shared state, where state might be shared and then later reclaimed as exclusive. We believe that a framework for temporarily-shared state should meet two key goals not adequately met by existing techniques. One, it should allow and encourage users to verify new sharing strategies. Two, it should provide an abstraction where users manipulate shared state in a way agnostic to the means with which it is shared. We present Leaf, a library in the Iris separation logic which accomplishes both of these goals by introducing a novel operator, which we call guarding, that allows one proposition to represent a shared version of another. We demonstrate that Leaf meets these two goals through a modular case study: we verify a reader-writer lock that supports shared state, and a hash table built on top of it that uses shared state.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Proceedings of the ACM on Programming Languages
Proceedings of the ACM on Programming Languages Engineering-Safety, Risk, Reliability and Quality
CiteScore
5.20
自引率
22.20%
发文量
192
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信