{"title":"黑洞是先进外星文明量子计算的工具","authors":"Gia Dvali, Zaza N. Osmanov","doi":"10.1017/s1473550423000186","DOIUrl":null,"url":null,"abstract":"Abstract We explain that black holes are the most efficient capacitors of quantum information. It is thereby expected that all sufficiently advanced civilizations ultimately employ black holes in their quantum computers. The accompanying Hawking radiation is democratic in particle species. Due to this, the alien quantum computers will radiate in ordinary particles such as neutrinos and photons within the range of potential sensitivity of our detectors. This offers a new avenue for search for extraterrestrial intelligence, including the civilizations entirely composed of hidden particles species interacting with our world exclusively through gravity.","PeriodicalId":13879,"journal":{"name":"International Journal of Astrobiology","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Black holes as tools for quantum computing by advanced extraterrestrial civilizations\",\"authors\":\"Gia Dvali, Zaza N. Osmanov\",\"doi\":\"10.1017/s1473550423000186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We explain that black holes are the most efficient capacitors of quantum information. It is thereby expected that all sufficiently advanced civilizations ultimately employ black holes in their quantum computers. The accompanying Hawking radiation is democratic in particle species. Due to this, the alien quantum computers will radiate in ordinary particles such as neutrinos and photons within the range of potential sensitivity of our detectors. This offers a new avenue for search for extraterrestrial intelligence, including the civilizations entirely composed of hidden particles species interacting with our world exclusively through gravity.\",\"PeriodicalId\":13879,\"journal\":{\"name\":\"International Journal of Astrobiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Astrobiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/s1473550423000186\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Astrobiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s1473550423000186","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Black holes as tools for quantum computing by advanced extraterrestrial civilizations
Abstract We explain that black holes are the most efficient capacitors of quantum information. It is thereby expected that all sufficiently advanced civilizations ultimately employ black holes in their quantum computers. The accompanying Hawking radiation is democratic in particle species. Due to this, the alien quantum computers will radiate in ordinary particles such as neutrinos and photons within the range of potential sensitivity of our detectors. This offers a new avenue for search for extraterrestrial intelligence, including the civilizations entirely composed of hidden particles species interacting with our world exclusively through gravity.
期刊介绍:
International Journal of Astrobiology is the peer-reviewed forum for practitioners in this exciting interdisciplinary field. Coverage includes cosmic prebiotic chemistry, planetary evolution, the search for planetary systems and habitable zones, extremophile biology and experimental simulation of extraterrestrial environments, Mars as an abode of life, life detection in our solar system and beyond, the search for extraterrestrial intelligence, the history of the science of astrobiology, as well as societal and educational aspects of astrobiology. Occasionally an issue of the journal is devoted to the keynote plenary research papers from an international meeting. A notable feature of the journal is the global distribution of its authors.