基于机器学习的系统安全感知契约

IF 2.2 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Angello Astorga, Chiao Hsieh, P. Madhusudan, Sayan Mitra
{"title":"基于机器学习的系统安全感知契约","authors":"Angello Astorga, Chiao Hsieh, P. Madhusudan, Sayan Mitra","doi":"10.1145/3622875","DOIUrl":null,"url":null,"abstract":"We introduce a novel notion of perception contracts to reason about the safety of controllers that interact with an environment using neural perception. Perception contracts capture errors in ground-truth estimations that preserve invariants when systems act upon them. We develop a theory of perception contracts and design symbolic learning algorithms for synthesizing them from a finite set of images. We implement our algorithms and evaluate synthesized perception contracts for two realistic vision-based control systems, a lane tracking system for an electric vehicle and an agricultural robot that follows crop rows. Our evaluation shows that our approach is effective in synthesizing perception contracts and generalizes well when evaluated over test images obtained during runtime monitoring of the systems.","PeriodicalId":20697,"journal":{"name":"Proceedings of the ACM on Programming Languages","volume":"52 1","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Perception Contracts for Safety of ML-Enabled Systems\",\"authors\":\"Angello Astorga, Chiao Hsieh, P. Madhusudan, Sayan Mitra\",\"doi\":\"10.1145/3622875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a novel notion of perception contracts to reason about the safety of controllers that interact with an environment using neural perception. Perception contracts capture errors in ground-truth estimations that preserve invariants when systems act upon them. We develop a theory of perception contracts and design symbolic learning algorithms for synthesizing them from a finite set of images. We implement our algorithms and evaluate synthesized perception contracts for two realistic vision-based control systems, a lane tracking system for an electric vehicle and an agricultural robot that follows crop rows. Our evaluation shows that our approach is effective in synthesizing perception contracts and generalizes well when evaluated over test images obtained during runtime monitoring of the systems.\",\"PeriodicalId\":20697,\"journal\":{\"name\":\"Proceedings of the ACM on Programming Languages\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM on Programming Languages\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3622875\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on Programming Languages","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3622875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 3

摘要

我们引入了一种新的感知契约概念来推理使用神经感知与环境交互的控制器的安全性。感知契约捕获了当系统对其起作用时保留不变量的基础真值估计中的错误。我们发展了一种感知契约理论,并设计了符号学习算法,用于从有限的图像集合中合成它们。我们实现了我们的算法,并评估了两种基于现实视觉的控制系统的综合感知契约,一种是电动汽车的车道跟踪系统,另一种是跟踪作物行的农业机器人。我们的评估表明,我们的方法在综合感知契约方面是有效的,并且在对系统运行时监控期间获得的测试图像进行评估时泛化得很好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Perception Contracts for Safety of ML-Enabled Systems
We introduce a novel notion of perception contracts to reason about the safety of controllers that interact with an environment using neural perception. Perception contracts capture errors in ground-truth estimations that preserve invariants when systems act upon them. We develop a theory of perception contracts and design symbolic learning algorithms for synthesizing them from a finite set of images. We implement our algorithms and evaluate synthesized perception contracts for two realistic vision-based control systems, a lane tracking system for an electric vehicle and an agricultural robot that follows crop rows. Our evaluation shows that our approach is effective in synthesizing perception contracts and generalizes well when evaluated over test images obtained during runtime monitoring of the systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Proceedings of the ACM on Programming Languages
Proceedings of the ACM on Programming Languages Engineering-Safety, Risk, Reliability and Quality
CiteScore
5.20
自引率
22.20%
发文量
192
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信