Riccardo Bianchini, Francesco Dagnino, Paola Giannini, Elena Zucca
{"title":"大步语义的资源感知合理性","authors":"Riccardo Bianchini, Francesco Dagnino, Paola Giannini, Elena Zucca","doi":"10.1145/3622843","DOIUrl":null,"url":null,"abstract":"We extend the semantics and type system of a lambda calculus equipped with common constructs to be resource-aware . That is, reduction is instrumented to keep track of the usage of resources, and the type system guarantees, besides standard soundness, that for well-typed programs there is a computation where no needed resource gets exhausted. The resource-aware extension is parametric on an arbitrary grade algebra , and does not require ad-hoc changes to the underlying language. To this end, the semantics needs to be formalized in big-step style; as a consequence, expressing and proving (resource-aware) soundness is challenging, and is achieved by applying recent techniques based on coinductive reasoning.","PeriodicalId":20697,"journal":{"name":"Proceedings of the ACM on Programming Languages","volume":"1131 1","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resource-Aware Soundness for Big-Step Semantics\",\"authors\":\"Riccardo Bianchini, Francesco Dagnino, Paola Giannini, Elena Zucca\",\"doi\":\"10.1145/3622843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We extend the semantics and type system of a lambda calculus equipped with common constructs to be resource-aware . That is, reduction is instrumented to keep track of the usage of resources, and the type system guarantees, besides standard soundness, that for well-typed programs there is a computation where no needed resource gets exhausted. The resource-aware extension is parametric on an arbitrary grade algebra , and does not require ad-hoc changes to the underlying language. To this end, the semantics needs to be formalized in big-step style; as a consequence, expressing and proving (resource-aware) soundness is challenging, and is achieved by applying recent techniques based on coinductive reasoning.\",\"PeriodicalId\":20697,\"journal\":{\"name\":\"Proceedings of the ACM on Programming Languages\",\"volume\":\"1131 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM on Programming Languages\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3622843\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on Programming Languages","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3622843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
We extend the semantics and type system of a lambda calculus equipped with common constructs to be resource-aware . That is, reduction is instrumented to keep track of the usage of resources, and the type system guarantees, besides standard soundness, that for well-typed programs there is a computation where no needed resource gets exhausted. The resource-aware extension is parametric on an arbitrary grade algebra , and does not require ad-hoc changes to the underlying language. To this end, the semantics needs to be formalized in big-step style; as a consequence, expressing and proving (resource-aware) soundness is challenging, and is achieved by applying recent techniques based on coinductive reasoning.