{"title":"具有恒定涡度的纯重力行准周期水波","authors":"Massimiliano Berti, Luca Franzoi, Alberto Maspero","doi":"10.1002/cpa.22143","DOIUrl":null,"url":null,"abstract":"<p>We prove the existence of small amplitude time quasi-periodic solutions of the <i>pure gravity</i> water waves equations with <i>constant vorticity</i>, for a bidimensional fluid over a flat bottom delimited by a space periodic free interface. Using a Nash-Moser implicit function iterative scheme we construct traveling nonlinear waves which pass through each other slightly deforming and retaining forever a quasiperiodic structure. These solutions exist for any fixed value of depth and gravity and restricting the vorticity parameter to a Borel set of asymptotically full Lebesgue measure.</p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"77 2","pages":"990-1064"},"PeriodicalIF":3.1000,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Pure gravity traveling quasi-periodic water waves with constant vorticity\",\"authors\":\"Massimiliano Berti, Luca Franzoi, Alberto Maspero\",\"doi\":\"10.1002/cpa.22143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove the existence of small amplitude time quasi-periodic solutions of the <i>pure gravity</i> water waves equations with <i>constant vorticity</i>, for a bidimensional fluid over a flat bottom delimited by a space periodic free interface. Using a Nash-Moser implicit function iterative scheme we construct traveling nonlinear waves which pass through each other slightly deforming and retaining forever a quasiperiodic structure. These solutions exist for any fixed value of depth and gravity and restricting the vorticity parameter to a Borel set of asymptotically full Lebesgue measure.</p>\",\"PeriodicalId\":10601,\"journal\":{\"name\":\"Communications on Pure and Applied Mathematics\",\"volume\":\"77 2\",\"pages\":\"990-1064\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications on Pure and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22143\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22143","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Pure gravity traveling quasi-periodic water waves with constant vorticity
We prove the existence of small amplitude time quasi-periodic solutions of the pure gravity water waves equations with constant vorticity, for a bidimensional fluid over a flat bottom delimited by a space periodic free interface. Using a Nash-Moser implicit function iterative scheme we construct traveling nonlinear waves which pass through each other slightly deforming and retaining forever a quasiperiodic structure. These solutions exist for any fixed value of depth and gravity and restricting the vorticity parameter to a Borel set of asymptotically full Lebesgue measure.