用于安全关键系统的可预测GPU波前分裂

IF 2.8 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Artem Klashtorny, Zhuanhao Wu, Anirudh Mohan Kaushik, Hiren Patel
{"title":"用于安全关键系统的可预测GPU波前分裂","authors":"Artem Klashtorny, Zhuanhao Wu, Anirudh Mohan Kaushik, Hiren Patel","doi":"10.1145/3609102","DOIUrl":null,"url":null,"abstract":"We present a predictable wavefront splitting (PWS) technique for graphics processing units (GPUs). PWS improves the performance of GPU applications by reducing the impact of branch divergence while ensuring that worst-case execution time (WCET) estimates can be computed. This makes PWS an appropriate technique to use in safety-critical applications, such as autonomous driving systems, avionics, and space, that require strict temporal guarantees. In developing PWS on an AMD-based GPU, we propose microarchitectural enhancements to the GPU, and a compiler pass that eliminates branch serializations to reduce the WCET of a wavefront. Our analysis of PWS exhibits a performance improvement of 11% over existing architectures with a lower WCET than prior works in wavefront splitting.","PeriodicalId":50914,"journal":{"name":"ACM Transactions on Embedded Computing Systems","volume":"87 1","pages":"0"},"PeriodicalIF":2.8000,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predictable GPU Wavefront Splitting for Safety-Critical Systems\",\"authors\":\"Artem Klashtorny, Zhuanhao Wu, Anirudh Mohan Kaushik, Hiren Patel\",\"doi\":\"10.1145/3609102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a predictable wavefront splitting (PWS) technique for graphics processing units (GPUs). PWS improves the performance of GPU applications by reducing the impact of branch divergence while ensuring that worst-case execution time (WCET) estimates can be computed. This makes PWS an appropriate technique to use in safety-critical applications, such as autonomous driving systems, avionics, and space, that require strict temporal guarantees. In developing PWS on an AMD-based GPU, we propose microarchitectural enhancements to the GPU, and a compiler pass that eliminates branch serializations to reduce the WCET of a wavefront. Our analysis of PWS exhibits a performance improvement of 11% over existing architectures with a lower WCET than prior works in wavefront splitting.\",\"PeriodicalId\":50914,\"journal\":{\"name\":\"ACM Transactions on Embedded Computing Systems\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Embedded Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3609102\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Embedded Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3609102","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种用于图形处理器(gpu)的可预测波前分裂(PWS)技术。PWS通过减少分支发散的影响来提高GPU应用程序的性能,同时确保可以计算最坏情况执行时间(WCET)估计。这使得PWS成为安全关键应用的合适技术,例如需要严格时间保证的自动驾驶系统、航空电子设备和空间。在基于amd的GPU上开发PWS时,我们提出了对GPU的微架构增强,以及消除分支序列化的编译器通道,以减少波前的WCET。我们对PWS的分析表明,在波前分裂方面,与现有架构相比,PWS的性能提高了11%,WCET比以前的工作低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predictable GPU Wavefront Splitting for Safety-Critical Systems
We present a predictable wavefront splitting (PWS) technique for graphics processing units (GPUs). PWS improves the performance of GPU applications by reducing the impact of branch divergence while ensuring that worst-case execution time (WCET) estimates can be computed. This makes PWS an appropriate technique to use in safety-critical applications, such as autonomous driving systems, avionics, and space, that require strict temporal guarantees. In developing PWS on an AMD-based GPU, we propose microarchitectural enhancements to the GPU, and a compiler pass that eliminates branch serializations to reduce the WCET of a wavefront. Our analysis of PWS exhibits a performance improvement of 11% over existing architectures with a lower WCET than prior works in wavefront splitting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Embedded Computing Systems
ACM Transactions on Embedded Computing Systems 工程技术-计算机:软件工程
CiteScore
3.70
自引率
0.00%
发文量
138
审稿时长
6 months
期刊介绍: The design of embedded computing systems, both the software and hardware, increasingly relies on sophisticated algorithms, analytical models, and methodologies. ACM Transactions on Embedded Computing Systems (TECS) aims to present the leading work relating to the analysis, design, behavior, and experience with embedded computing systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信