{"title":"让粗粒度资源共享:在fpga上映射整个神经网络","authors":"Tzung-Han Juang, Christof Schlaak, Christophe Dubach","doi":"10.1145/3609109","DOIUrl":null,"url":null,"abstract":"Traditional High-Level Synthesis (HLS) provides rapid prototyping of hardware accelerators without coding with Hardware Description Languages (HDLs). However, such an approach does not well support allocating large applications like entire deep neural networks on a single Field Programmable Gate Array (FPGA) device. The approach leads to designs that are inefficient or do not fit into FPGAs due to resource constraints. This work proposes to shrink generated designs by coarse-grained resource control based on function sharing in functional Intermediate Representations (IRs). The proposed compiler passes and rewrite system aim at producing valid design points and removing redundant hardware. Such optimizations make fitting entire neural networks on FPGAs feasible and produce competitive performance compared to running specialized kernels for each layer.","PeriodicalId":50914,"journal":{"name":"ACM Transactions on Embedded Computing Systems","volume":"16 1","pages":"0"},"PeriodicalIF":2.8000,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Let Coarse-Grained Resources Be Shared: Mapping Entire Neural Networks on FPGAs\",\"authors\":\"Tzung-Han Juang, Christof Schlaak, Christophe Dubach\",\"doi\":\"10.1145/3609109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional High-Level Synthesis (HLS) provides rapid prototyping of hardware accelerators without coding with Hardware Description Languages (HDLs). However, such an approach does not well support allocating large applications like entire deep neural networks on a single Field Programmable Gate Array (FPGA) device. The approach leads to designs that are inefficient or do not fit into FPGAs due to resource constraints. This work proposes to shrink generated designs by coarse-grained resource control based on function sharing in functional Intermediate Representations (IRs). The proposed compiler passes and rewrite system aim at producing valid design points and removing redundant hardware. Such optimizations make fitting entire neural networks on FPGAs feasible and produce competitive performance compared to running specialized kernels for each layer.\",\"PeriodicalId\":50914,\"journal\":{\"name\":\"ACM Transactions on Embedded Computing Systems\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Embedded Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3609109\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Embedded Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3609109","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Let Coarse-Grained Resources Be Shared: Mapping Entire Neural Networks on FPGAs
Traditional High-Level Synthesis (HLS) provides rapid prototyping of hardware accelerators without coding with Hardware Description Languages (HDLs). However, such an approach does not well support allocating large applications like entire deep neural networks on a single Field Programmable Gate Array (FPGA) device. The approach leads to designs that are inefficient or do not fit into FPGAs due to resource constraints. This work proposes to shrink generated designs by coarse-grained resource control based on function sharing in functional Intermediate Representations (IRs). The proposed compiler passes and rewrite system aim at producing valid design points and removing redundant hardware. Such optimizations make fitting entire neural networks on FPGAs feasible and produce competitive performance compared to running specialized kernels for each layer.
期刊介绍:
The design of embedded computing systems, both the software and hardware, increasingly relies on sophisticated algorithms, analytical models, and methodologies. ACM Transactions on Embedded Computing Systems (TECS) aims to present the leading work relating to the analysis, design, behavior, and experience with embedded computing systems.