{"title":"基于压电陶瓷传感器的不同温度下土桩剥脱损伤监测","authors":"Daopei Zhu, Xu Liu, Zhangli Wang, Xiaoli Cai","doi":"10.1155/2023/4051413","DOIUrl":null,"url":null,"abstract":"Large temperature differences exist between the winter and summer seasons in different regions of China. Such temperature differences, caused by seasonal changes, may affect the life cycles of piles. Under natural conditions, such as long-term operation under the ambient environment and loads, piles and the surrounding soil undergo peel damage. To study such peel damage between the pile and soil at different temperatures, we installed concrete test piles in soil and subjected them to different temperatures. A crack with a width of 2 cm, depth of 10 cm, and damage range of 90° was applied at the side of the piles. Furthermore, a horizontal impact load was applied near the top of the pile and a piezoelectric ceramic sensor was used to obtain the stress wave response signals. The experimental results reveal that with a decrease in the soil temperature, the amplitude and fluctuation range of the signals received by the piezoelectric sensor decreased. According to the experimental results, in the group with the greatest influence of temperature, keeping other conditions unchanged and setting different crack depths, the horizontal impact load can also be introduced to observe the frequency change. It can be observed that the larger the crack depth, the smaller the frequency. Finally, ABAQUS was used for simulations, whose results were found to be consistent with those of the experiments. This paper describes a method for determining the safety of soil and piles with peel damage at different temperatures, and it also provides a validation of the necessity of holding the rest constant.","PeriodicalId":21915,"journal":{"name":"Shock and Vibration","volume":"33 2","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monitoring Soil-Pile Stripping Damage at Different Temperatures via Piezoelectric Ceramic Sensors\",\"authors\":\"Daopei Zhu, Xu Liu, Zhangli Wang, Xiaoli Cai\",\"doi\":\"10.1155/2023/4051413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large temperature differences exist between the winter and summer seasons in different regions of China. Such temperature differences, caused by seasonal changes, may affect the life cycles of piles. Under natural conditions, such as long-term operation under the ambient environment and loads, piles and the surrounding soil undergo peel damage. To study such peel damage between the pile and soil at different temperatures, we installed concrete test piles in soil and subjected them to different temperatures. A crack with a width of 2 cm, depth of 10 cm, and damage range of 90° was applied at the side of the piles. Furthermore, a horizontal impact load was applied near the top of the pile and a piezoelectric ceramic sensor was used to obtain the stress wave response signals. The experimental results reveal that with a decrease in the soil temperature, the amplitude and fluctuation range of the signals received by the piezoelectric sensor decreased. According to the experimental results, in the group with the greatest influence of temperature, keeping other conditions unchanged and setting different crack depths, the horizontal impact load can also be introduced to observe the frequency change. It can be observed that the larger the crack depth, the smaller the frequency. Finally, ABAQUS was used for simulations, whose results were found to be consistent with those of the experiments. This paper describes a method for determining the safety of soil and piles with peel damage at different temperatures, and it also provides a validation of the necessity of holding the rest constant.\",\"PeriodicalId\":21915,\"journal\":{\"name\":\"Shock and Vibration\",\"volume\":\"33 2\",\"pages\":\"0\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Shock and Vibration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/4051413\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Shock and Vibration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/4051413","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
Monitoring Soil-Pile Stripping Damage at Different Temperatures via Piezoelectric Ceramic Sensors
Large temperature differences exist between the winter and summer seasons in different regions of China. Such temperature differences, caused by seasonal changes, may affect the life cycles of piles. Under natural conditions, such as long-term operation under the ambient environment and loads, piles and the surrounding soil undergo peel damage. To study such peel damage between the pile and soil at different temperatures, we installed concrete test piles in soil and subjected them to different temperatures. A crack with a width of 2 cm, depth of 10 cm, and damage range of 90° was applied at the side of the piles. Furthermore, a horizontal impact load was applied near the top of the pile and a piezoelectric ceramic sensor was used to obtain the stress wave response signals. The experimental results reveal that with a decrease in the soil temperature, the amplitude and fluctuation range of the signals received by the piezoelectric sensor decreased. According to the experimental results, in the group with the greatest influence of temperature, keeping other conditions unchanged and setting different crack depths, the horizontal impact load can also be introduced to observe the frequency change. It can be observed that the larger the crack depth, the smaller the frequency. Finally, ABAQUS was used for simulations, whose results were found to be consistent with those of the experiments. This paper describes a method for determining the safety of soil and piles with peel damage at different temperatures, and it also provides a validation of the necessity of holding the rest constant.
期刊介绍:
Shock and Vibration publishes papers on all aspects of shock and vibration, especially in relation to civil, mechanical and aerospace engineering applications, as well as transport, materials and geoscience. Papers may be theoretical or experimental, and either fundamental or highly applied.