使用分位数条件方差比估计对称$$\alpha $$ -稳定分布的稳定性指数

test Pub Date : 2023-10-30 DOI:10.1007/s11749-023-00894-7
Kewin Pączek, Damian Jelito, Marcin Pitera, Agnieszka Wyłomańska
{"title":"使用分位数条件方差比估计对称$$\\alpha $$ -稳定分布的稳定性指数","authors":"Kewin Pączek, Damian Jelito, Marcin Pitera, Agnieszka Wyłomańska","doi":"10.1007/s11749-023-00894-7","DOIUrl":null,"url":null,"abstract":"Abstract The class of $$\\alpha $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>α</mml:mi> </mml:math> -stable distributions is widely used in various applications, especially for modeling heavy-tailed data. Although the $$\\alpha $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>α</mml:mi> </mml:math> -stable distributions have been used in practice for many years, new methods for identification, testing, and estimation are still being refined and new approaches are being proposed. The constant development of new statistical methods is related to the low efficiency of existing algorithms, especially when the underlying sample is small or the distribution is close to Gaussian. In this paper, we propose a new estimation algorithm for the stability index, for samples from the symmetric $$\\alpha $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>α</mml:mi> </mml:math> -stable distribution. The proposed approach is based on a quantile conditional variance ratio. We study the statistical properties of the proposed estimation procedure and show empirically that our methodology often outperforms other commonly used estimation algorithms. Moreover, we show that our statistic extracts unique sample characteristics that can be combined with other methods to refine existing methodologies via ensemble methods. Although our focus is set on the symmetric $$\\alpha $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>α</mml:mi> </mml:math> -stable case, we demonstrate that the considered statistic is insensitive to the skewness parameter change, so our method could be also used in a more generic framework. For completeness, we also show how to apply our method to real data linked to financial market and plasma physics.","PeriodicalId":101465,"journal":{"name":"test","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Estimation of stability index for symmetric $$\\\\alpha $$-stable distribution using quantile conditional variance ratios\",\"authors\":\"Kewin Pączek, Damian Jelito, Marcin Pitera, Agnieszka Wyłomańska\",\"doi\":\"10.1007/s11749-023-00894-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The class of $$\\\\alpha $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>α</mml:mi> </mml:math> -stable distributions is widely used in various applications, especially for modeling heavy-tailed data. Although the $$\\\\alpha $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>α</mml:mi> </mml:math> -stable distributions have been used in practice for many years, new methods for identification, testing, and estimation are still being refined and new approaches are being proposed. The constant development of new statistical methods is related to the low efficiency of existing algorithms, especially when the underlying sample is small or the distribution is close to Gaussian. In this paper, we propose a new estimation algorithm for the stability index, for samples from the symmetric $$\\\\alpha $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>α</mml:mi> </mml:math> -stable distribution. The proposed approach is based on a quantile conditional variance ratio. We study the statistical properties of the proposed estimation procedure and show empirically that our methodology often outperforms other commonly used estimation algorithms. Moreover, we show that our statistic extracts unique sample characteristics that can be combined with other methods to refine existing methodologies via ensemble methods. Although our focus is set on the symmetric $$\\\\alpha $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>α</mml:mi> </mml:math> -stable case, we demonstrate that the considered statistic is insensitive to the skewness parameter change, so our method could be also used in a more generic framework. For completeness, we also show how to apply our method to real data linked to financial market and plasma physics.\",\"PeriodicalId\":101465,\"journal\":{\"name\":\"test\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"test\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11749-023-00894-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"test","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11749-023-00894-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

$$\alpha $$ α稳定分布类广泛应用于各种应用,特别是对重尾数据的建模。虽然$$\alpha $$ α稳定分布已经在实践中使用了许多年,但用于识别、测试和估计的新方法仍在不断改进,并提出了新的方法。新的统计方法的不断发展与现有算法的低效率有关,特别是当底层样本很小或分布接近高斯分布时。本文针对对称$$\alpha $$ α -稳定分布的样本,提出了一种新的稳定性指标估计算法。该方法基于分位数条件方差比。我们研究了所提出的估计过程的统计性质,并通过经验表明,我们的方法通常优于其他常用的估计算法。此外,我们表明,我们的统计提取独特的样本特征,可以与其他方法相结合,通过集成方法来改进现有的方法。虽然我们的重点放在对称$$\alpha $$ α稳定的情况下,但我们证明了所考虑的统计量对偏度参数的变化不敏感,因此我们的方法也可以用于更通用的框架。为了完整起见,我们还展示了如何将我们的方法应用于与金融市场和等离子体物理相关的实际数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Estimation of stability index for symmetric $$\alpha $$-stable distribution using quantile conditional variance ratios

Estimation of stability index for symmetric $$\alpha $$-stable distribution using quantile conditional variance ratios
Abstract The class of $$\alpha $$ α -stable distributions is widely used in various applications, especially for modeling heavy-tailed data. Although the $$\alpha $$ α -stable distributions have been used in practice for many years, new methods for identification, testing, and estimation are still being refined and new approaches are being proposed. The constant development of new statistical methods is related to the low efficiency of existing algorithms, especially when the underlying sample is small or the distribution is close to Gaussian. In this paper, we propose a new estimation algorithm for the stability index, for samples from the symmetric $$\alpha $$ α -stable distribution. The proposed approach is based on a quantile conditional variance ratio. We study the statistical properties of the proposed estimation procedure and show empirically that our methodology often outperforms other commonly used estimation algorithms. Moreover, we show that our statistic extracts unique sample characteristics that can be combined with other methods to refine existing methodologies via ensemble methods. Although our focus is set on the symmetric $$\alpha $$ α -stable case, we demonstrate that the considered statistic is insensitive to the skewness parameter change, so our method could be also used in a more generic framework. For completeness, we also show how to apply our method to real data linked to financial market and plasma physics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信