{"title":"一类新的分数阶抛物型随机演化方程的正则性理论","authors":"Kristin Kirchner, Joshua Willems","doi":"10.1007/s40072-023-00316-7","DOIUrl":null,"url":null,"abstract":"Abstract A new class of fractional-order parabolic stochastic evolution equations of the form $$(\\partial _t + A)^\\gamma X(t) = {\\dot{W}}^Q(t)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:msub> <mml:mi>∂</mml:mi> <mml:mi>t</mml:mi> </mml:msub> <mml:mo>+</mml:mo> <mml:mi>A</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mi>γ</mml:mi> </mml:msup> <mml:mi>X</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>=</mml:mo> <mml:msup> <mml:mrow> <mml:mover> <mml:mi>W</mml:mi> <mml:mo>˙</mml:mo> </mml:mover> </mml:mrow> <mml:mi>Q</mml:mi> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> , $$t\\in [0,T]$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>t</mml:mi> <mml:mo>∈</mml:mo> <mml:mo>[</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>T</mml:mi> <mml:mo>]</mml:mo> </mml:mrow> </mml:math> , $$\\gamma \\in (0,\\infty )$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>γ</mml:mi> <mml:mo>∈</mml:mo> <mml:mo>(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>∞</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> , is introduced, where $$-A$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mo>-</mml:mo> <mml:mi>A</mml:mi> </mml:mrow> </mml:math> generates a $$C_0$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>C</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:math> -semigroup on a separable Hilbert space H and the spatiotemporal driving noise $${\\dot{W}}^Q$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mrow> <mml:mover> <mml:mi>W</mml:mi> <mml:mo>˙</mml:mo> </mml:mover> </mml:mrow> <mml:mi>Q</mml:mi> </mml:msup> </mml:math> is the formal time derivative of an H -valued cylindrical Q -Wiener process. Mild and weak solutions are defined; these concepts are shown to be equivalent and to lead to well-posed problems. Temporal and spatial regularity of the solution process X are investigated, the former being measured by mean-square or pathwise smoothness and the latter by using domains of fractional powers of A . In addition, the covariance of X and its long-time behavior are analyzed. These abstract results are applied to the cases when $$A:= L^\\beta $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>A</mml:mi> <mml:mo>:</mml:mo> <mml:mo>=</mml:mo> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>β</mml:mi> </mml:msup> </mml:mrow> </mml:math> and $$Q:={\\widetilde{L}}^{-\\alpha }$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>Q</mml:mi> <mml:mo>:</mml:mo> <mml:mo>=</mml:mo> <mml:msup> <mml:mrow> <mml:mover> <mml:mi>L</mml:mi> <mml:mo>~</mml:mo> </mml:mover> </mml:mrow> <mml:mrow> <mml:mo>-</mml:mo> <mml:mi>α</mml:mi> </mml:mrow> </mml:msup> </mml:mrow> </mml:math> are fractional powers of symmetric, strongly elliptic second-order differential operators defined on (i) bounded Euclidean domains or (ii) smooth, compact surfaces. In these cases, the Gaussian solution processes can be seen as generalizations of merely spatial (Whittle–)Matérn fields to space–time.","PeriodicalId":48569,"journal":{"name":"Stochastics and Partial Differential Equations-Analysis and Computations","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Regularity theory for a new class of fractional parabolic stochastic evolution equations\",\"authors\":\"Kristin Kirchner, Joshua Willems\",\"doi\":\"10.1007/s40072-023-00316-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A new class of fractional-order parabolic stochastic evolution equations of the form $$(\\\\partial _t + A)^\\\\gamma X(t) = {\\\\dot{W}}^Q(t)$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:msub> <mml:mi>∂</mml:mi> <mml:mi>t</mml:mi> </mml:msub> <mml:mo>+</mml:mo> <mml:mi>A</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mi>γ</mml:mi> </mml:msup> <mml:mi>X</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>=</mml:mo> <mml:msup> <mml:mrow> <mml:mover> <mml:mi>W</mml:mi> <mml:mo>˙</mml:mo> </mml:mover> </mml:mrow> <mml:mi>Q</mml:mi> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> , $$t\\\\in [0,T]$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>t</mml:mi> <mml:mo>∈</mml:mo> <mml:mo>[</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>T</mml:mi> <mml:mo>]</mml:mo> </mml:mrow> </mml:math> , $$\\\\gamma \\\\in (0,\\\\infty )$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>γ</mml:mi> <mml:mo>∈</mml:mo> <mml:mo>(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>∞</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> , is introduced, where $$-A$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mo>-</mml:mo> <mml:mi>A</mml:mi> </mml:mrow> </mml:math> generates a $$C_0$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msub> <mml:mi>C</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:math> -semigroup on a separable Hilbert space H and the spatiotemporal driving noise $${\\\\dot{W}}^Q$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msup> <mml:mrow> <mml:mover> <mml:mi>W</mml:mi> <mml:mo>˙</mml:mo> </mml:mover> </mml:mrow> <mml:mi>Q</mml:mi> </mml:msup> </mml:math> is the formal time derivative of an H -valued cylindrical Q -Wiener process. Mild and weak solutions are defined; these concepts are shown to be equivalent and to lead to well-posed problems. Temporal and spatial regularity of the solution process X are investigated, the former being measured by mean-square or pathwise smoothness and the latter by using domains of fractional powers of A . In addition, the covariance of X and its long-time behavior are analyzed. These abstract results are applied to the cases when $$A:= L^\\\\beta $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>A</mml:mi> <mml:mo>:</mml:mo> <mml:mo>=</mml:mo> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>β</mml:mi> </mml:msup> </mml:mrow> </mml:math> and $$Q:={\\\\widetilde{L}}^{-\\\\alpha }$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>Q</mml:mi> <mml:mo>:</mml:mo> <mml:mo>=</mml:mo> <mml:msup> <mml:mrow> <mml:mover> <mml:mi>L</mml:mi> <mml:mo>~</mml:mo> </mml:mover> </mml:mrow> <mml:mrow> <mml:mo>-</mml:mo> <mml:mi>α</mml:mi> </mml:mrow> </mml:msup> </mml:mrow> </mml:math> are fractional powers of symmetric, strongly elliptic second-order differential operators defined on (i) bounded Euclidean domains or (ii) smooth, compact surfaces. In these cases, the Gaussian solution processes can be seen as generalizations of merely spatial (Whittle–)Matérn fields to space–time.\",\"PeriodicalId\":48569,\"journal\":{\"name\":\"Stochastics and Partial Differential Equations-Analysis and Computations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastics and Partial Differential Equations-Analysis and Computations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40072-023-00316-7\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastics and Partial Differential Equations-Analysis and Computations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40072-023-00316-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Regularity theory for a new class of fractional parabolic stochastic evolution equations
Abstract A new class of fractional-order parabolic stochastic evolution equations of the form $$(\partial _t + A)^\gamma X(t) = {\dot{W}}^Q(t)$$ (∂t+A)γX(t)=W˙Q(t) , $$t\in [0,T]$$ t∈[0,T] , $$\gamma \in (0,\infty )$$ γ∈(0,∞) , is introduced, where $$-A$$ -A generates a $$C_0$$ C0 -semigroup on a separable Hilbert space H and the spatiotemporal driving noise $${\dot{W}}^Q$$ W˙Q is the formal time derivative of an H -valued cylindrical Q -Wiener process. Mild and weak solutions are defined; these concepts are shown to be equivalent and to lead to well-posed problems. Temporal and spatial regularity of the solution process X are investigated, the former being measured by mean-square or pathwise smoothness and the latter by using domains of fractional powers of A . In addition, the covariance of X and its long-time behavior are analyzed. These abstract results are applied to the cases when $$A:= L^\beta $$ A:=Lβ and $$Q:={\widetilde{L}}^{-\alpha }$$ Q:=L~-α are fractional powers of symmetric, strongly elliptic second-order differential operators defined on (i) bounded Euclidean domains or (ii) smooth, compact surfaces. In these cases, the Gaussian solution processes can be seen as generalizations of merely spatial (Whittle–)Matérn fields to space–time.
期刊介绍:
Stochastics and Partial Differential Equations: Analysis and Computations publishes the highest quality articles presenting significantly new and important developments in the SPDE theory and applications. SPDE is an active interdisciplinary area at the crossroads of stochastic anaylsis, partial differential equations and scientific computing. Statistical physics, fluid dynamics, financial modeling, nonlinear filtering, super-processes, continuum physics and, recently, uncertainty quantification are important contributors to and major users of the theory and practice of SPDEs. The journal is promoting synergetic activities between the SPDE theory, applications, and related large scale computations. The journal also welcomes high quality articles in fields strongly connected to SPDE such as stochastic differential equations in infinite-dimensional state spaces or probabilistic approaches to solving deterministic PDEs.