LÉvy洛伦兹-李代数的过程

IF 0.6 4区 数学 Q4 MATHEMATICS, APPLIED
Ameur Dhahri, Uwe Franz
{"title":"LÉvy洛伦兹-李代数的过程","authors":"Ameur Dhahri, Uwe Franz","doi":"10.1142/9789811275999_0003","DOIUrl":null,"url":null,"abstract":"Levy processes in the sense of Schurmann on the Lie algebra of the Lorentz grouop are studied. It is known that only one of the irreducible unitary representations of the Lorentz group admits a non-trivial one-cocycle. A Schurmann triple is constructed for this cocycle and the properties of the associated Levy process are investigated. The decommpositions of the restrictions of this triple to the Lie subalgebras $so(3)$ and $so(2,1)$ are described.","PeriodicalId":50366,"journal":{"name":"Infinite Dimensional Analysis Quantum Probability and Related Topics","volume":"43 14","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LÉVY PROCESSES ON THE LORENTZ-LIE ALGEBRA\",\"authors\":\"Ameur Dhahri, Uwe Franz\",\"doi\":\"10.1142/9789811275999_0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Levy processes in the sense of Schurmann on the Lie algebra of the Lorentz grouop are studied. It is known that only one of the irreducible unitary representations of the Lorentz group admits a non-trivial one-cocycle. A Schurmann triple is constructed for this cocycle and the properties of the associated Levy process are investigated. The decommpositions of the restrictions of this triple to the Lie subalgebras $so(3)$ and $so(2,1)$ are described.\",\"PeriodicalId\":50366,\"journal\":{\"name\":\"Infinite Dimensional Analysis Quantum Probability and Related Topics\",\"volume\":\"43 14\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infinite Dimensional Analysis Quantum Probability and Related Topics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/9789811275999_0003\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infinite Dimensional Analysis Quantum Probability and Related Topics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9789811275999_0003","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

研究了Lorentz群李代数上Schurmann意义上的Levy过程。已知在洛伦兹群的不可约酉表示中,只有一个存在非平凡的一环。构造了该循环的Schurmann三重体,并研究了相关Levy过程的性质。描述了这个三元组的约束分解为李子代数$so(3)$和$so(2,1)$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LÉVY PROCESSES ON THE LORENTZ-LIE ALGEBRA
Levy processes in the sense of Schurmann on the Lie algebra of the Lorentz grouop are studied. It is known that only one of the irreducible unitary representations of the Lorentz group admits a non-trivial one-cocycle. A Schurmann triple is constructed for this cocycle and the properties of the associated Levy process are investigated. The decommpositions of the restrictions of this triple to the Lie subalgebras $so(3)$ and $so(2,1)$ are described.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
11.10%
发文量
34
审稿时长
>12 weeks
期刊介绍: In the past few years the fields of infinite dimensional analysis and quantum probability have undergone increasingly significant developments and have found many new applications, in particular, to classical probability and to different branches of physics. The number of first-class papers in these fields has grown at the same rate. This is currently the only journal which is devoted to these fields. It constitutes an essential and central point of reference for the large number of mathematicians, mathematical physicists and other scientists who have been drawn into these areas. Both fields have strong interdisciplinary nature, with deep connection to, for example, classical probability, stochastic analysis, mathematical physics, operator algebras, irreversibility, ergodic theory and dynamical systems, quantum groups, classical and quantum stochastic geometry, quantum chaos, Dirichlet forms, harmonic analysis, quantum measurement, quantum computer, etc. The journal reflects this interdisciplinarity and welcomes high quality papers in all such related fields, particularly those which reveal connections with the main fields of this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信