序数模型中贝叶斯分位数回归的R包

IF 2.3 4区 计算机科学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
R Journal Pub Date : 2023-11-01 DOI:10.32614/rj-2023-042
Prajual Maheshwari, Mohammad Arshad Rahman
{"title":"序数模型中贝叶斯分位数回归的R包","authors":"Prajual Maheshwari, Mohammad Arshad Rahman","doi":"10.32614/rj-2023-042","DOIUrl":null,"url":null,"abstract":"This article describes an R package bqror that estimates Bayesian quantile regression for ordinal models introduced in \\citet{Rahman-2016}. The paper classifies ordinal models into two types and offers two computationally efficient, yet simple, MCMC algorithms for estimating ordinal quantile regression. The generic ordinal model with more than 3 outcomes (labeled $OR_{I}$ model) is estimated by a combination of Gibbs sampling and Metropolis-Hastings algorithm. Whereas an ordinal model with exactly 3 outcomes (labeled $OR_{II}$ model) is estimated using Gibbs sampling only. In line with the Bayesian literature, we suggest using marginal likelihood for comparing alternative quantile regression models and explain how to calculate the same. The models and their estimation procedures are illustrated via multiple simulation studies and implemented in the two applications presented in \\citet{Rahman-2016}. The article also describes several other functions contained within the bqror package, which are necessary for estimation, inference, and assessing model fit.","PeriodicalId":51285,"journal":{"name":"R Journal","volume":"32 4","pages":"0"},"PeriodicalIF":2.3000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"bqror: An R package for Bayesian Quantile Regression in Ordinal Models\",\"authors\":\"Prajual Maheshwari, Mohammad Arshad Rahman\",\"doi\":\"10.32614/rj-2023-042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article describes an R package bqror that estimates Bayesian quantile regression for ordinal models introduced in \\\\citet{Rahman-2016}. The paper classifies ordinal models into two types and offers two computationally efficient, yet simple, MCMC algorithms for estimating ordinal quantile regression. The generic ordinal model with more than 3 outcomes (labeled $OR_{I}$ model) is estimated by a combination of Gibbs sampling and Metropolis-Hastings algorithm. Whereas an ordinal model with exactly 3 outcomes (labeled $OR_{II}$ model) is estimated using Gibbs sampling only. In line with the Bayesian literature, we suggest using marginal likelihood for comparing alternative quantile regression models and explain how to calculate the same. The models and their estimation procedures are illustrated via multiple simulation studies and implemented in the two applications presented in \\\\citet{Rahman-2016}. The article also describes several other functions contained within the bqror package, which are necessary for estimation, inference, and assessing model fit.\",\"PeriodicalId\":51285,\"journal\":{\"name\":\"R Journal\",\"volume\":\"32 4\",\"pages\":\"0\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"R Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32614/rj-2023-042\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"R Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32614/rj-2023-042","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文描述了一个R包浏览器,用于估计\citet{Rahman-2016}中引入的有序模型的贝叶斯分位数回归。本文将有序模型分为两类,并提供了两种计算效率高且简单的MCMC算法来估计有序分位数回归。采用Gibbs抽样和Metropolis-Hastings算法相结合的方法估计出具有3个以上结果的一般有序模型(标记为$OR_{I}$模型)。而恰好有3个结果的有序模型(标记为$OR_{II}$模型)仅使用吉布斯抽样进行估计。根据贝叶斯文献,我们建议使用边际似然来比较不同的分位数回归模型,并解释如何计算相同的似然。这些模型和它们的估计过程通过多个仿真研究来说明,并在\citet{Rahman-2016}中提出的两个应用中实现。本文还描述了brqror包中包含的其他几个函数,这些函数对于估计、推断和评估模型拟合是必需的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
bqror: An R package for Bayesian Quantile Regression in Ordinal Models
This article describes an R package bqror that estimates Bayesian quantile regression for ordinal models introduced in \citet{Rahman-2016}. The paper classifies ordinal models into two types and offers two computationally efficient, yet simple, MCMC algorithms for estimating ordinal quantile regression. The generic ordinal model with more than 3 outcomes (labeled $OR_{I}$ model) is estimated by a combination of Gibbs sampling and Metropolis-Hastings algorithm. Whereas an ordinal model with exactly 3 outcomes (labeled $OR_{II}$ model) is estimated using Gibbs sampling only. In line with the Bayesian literature, we suggest using marginal likelihood for comparing alternative quantile regression models and explain how to calculate the same. The models and their estimation procedures are illustrated via multiple simulation studies and implemented in the two applications presented in \citet{Rahman-2016}. The article also describes several other functions contained within the bqror package, which are necessary for estimation, inference, and assessing model fit.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
R Journal
R Journal COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-STATISTICS & PROBABILITY
CiteScore
2.70
自引率
0.00%
发文量
40
审稿时长
>12 weeks
期刊介绍: The R Journal is the open access, refereed journal of the R project for statistical computing. It features short to medium length articles covering topics that should be of interest to users or developers of R. The R Journal intends to reach a wide audience and have a thorough review process. Papers are expected to be reasonably short, clearly written, not too technical, and of course focused on R. Authors of refereed articles should take care to: - put their contribution in context, in particular discuss related R functions or packages; - explain the motivation for their contribution; - provide code examples that are reproducible.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信