{"title":"卡斯特诺沃多面体","authors":"Akiyoshi Tsuchiya","doi":"10.1307/mmj/20216027","DOIUrl":null,"url":null,"abstract":"It is known that the sectional genus of a polarized variety has an upper bound, which is an extension of the Castelnuovo bound on the genus of a projective curve. Polarized varieties whose sectional genus achieve this bound are called Castelnuovo. On the other hand, a lattice polytope is called Castelnuovo if the associated polarized toric variety is Castelnuovo. Kawaguchi characterized Castelnuovo polytopes having interior lattice points in terms of their h∗-vectors. In this paper, as a generalization of this result, we present a characterization of all Castelnuovo polytopes. Finally, as an application of our characterization, we give a sufficient criterion for a lattice polytope to be IDP.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Castelnuovo Polytopes\",\"authors\":\"Akiyoshi Tsuchiya\",\"doi\":\"10.1307/mmj/20216027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is known that the sectional genus of a polarized variety has an upper bound, which is an extension of the Castelnuovo bound on the genus of a projective curve. Polarized varieties whose sectional genus achieve this bound are called Castelnuovo. On the other hand, a lattice polytope is called Castelnuovo if the associated polarized toric variety is Castelnuovo. Kawaguchi characterized Castelnuovo polytopes having interior lattice points in terms of their h∗-vectors. In this paper, as a generalization of this result, we present a characterization of all Castelnuovo polytopes. Finally, as an application of our characterization, we give a sufficient criterion for a lattice polytope to be IDP.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1307/mmj/20216027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1307/mmj/20216027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
It is known that the sectional genus of a polarized variety has an upper bound, which is an extension of the Castelnuovo bound on the genus of a projective curve. Polarized varieties whose sectional genus achieve this bound are called Castelnuovo. On the other hand, a lattice polytope is called Castelnuovo if the associated polarized toric variety is Castelnuovo. Kawaguchi characterized Castelnuovo polytopes having interior lattice points in terms of their h∗-vectors. In this paper, as a generalization of this result, we present a characterization of all Castelnuovo polytopes. Finally, as an application of our characterization, we give a sufficient criterion for a lattice polytope to be IDP.