具有测量数据的势估计和拟线性抛物方程

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Quoc Hung Nguyen
{"title":"具有测量数据的势估计和拟线性抛物方程","authors":"Quoc Hung Nguyen","doi":"10.1090/memo/1449","DOIUrl":null,"url":null,"abstract":"In this memoir, we study the existence and regularity of the quasilinear parabolic equations: <disp-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"u Subscript t Baseline minus d i v left-parenthesis upper A left-parenthesis x comma t comma nabla u right-parenthesis right-parenthesis equals upper B left-parenthesis u comma nabla u right-parenthesis plus mu comma\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>u</mml:mi> <mml:mi>t</mml:mi> </mml:msub> <mml:mo>−<!-- − --></mml:mo> <mml:mi>div</mml:mi> <mml:mo>⁡<!-- ⁡ --></mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>A</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi mathvariant=\"normal\">∇<!-- ∇ --></mml:mi> <mml:mi>u</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>B</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>u</mml:mi> <mml:mo>,</mml:mo> <mml:mi mathvariant=\"normal\">∇<!-- ∇ --></mml:mi> <mml:mi>u</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>+</mml:mo> <mml:mi>μ<!-- μ --></mml:mi> <mml:mo>,</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\begin{equation*} u_t-\\operatorname {div}(A(x,t,\\nabla u))=B(u,\\nabla u)+\\mu , \\end{equation*}</mml:annotation> </mml:semantics> </mml:math> </disp-formula> in either <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R Superscript upper N plus 1\"> <mml:semantics> <mml:msup> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>N</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:annotation encoding=\"application/x-tex\">\\mathbb {R}^{N+1}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> or <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R Superscript upper N Baseline times left-parenthesis 0 comma normal infinity right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mi>N</mml:mi> </mml:msup> <mml:mo>×<!-- × --></mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathbb {R}^N\\times (0,\\infty )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> or on a bounded domain <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Omega times left-parenthesis 0 comma upper T right-parenthesis subset-of double-struck upper R Superscript upper N plus 1\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi> <mml:mo>×<!-- × --></mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>T</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>⊂<!-- ⊂ --></mml:mo> <mml:msup> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>N</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\Omega \\times (0,T)\\subset \\mathbb {R}^{N+1}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper N greater-than-or-equal-to 2\"> <mml:semantics> <mml:mrow> <mml:mi>N</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">N\\geq 2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We shall assume that the nonlinearity <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A\"> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding=\"application/x-tex\">A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> fulfills standard growth conditions, the function <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B\"> <mml:semantics> <mml:mi>B</mml:mi> <mml:annotation encoding=\"application/x-tex\">B</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a continuous and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"mu\"> <mml:semantics> <mml:mi>μ<!-- μ --></mml:mi> <mml:annotation encoding=\"application/x-tex\">\\mu</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a radon measure. Our first task is to establish the existence results with <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B left-parenthesis u comma nabla u right-parenthesis equals plus-or-minus StartAbsoluteValue u EndAbsoluteValue Superscript q minus 1 Baseline u\"> <mml:semantics> <mml:mrow> <mml:mi>B</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>u</mml:mi> <mml:mo>,</mml:mo> <mml:mi mathvariant=\"normal\">∇<!-- ∇ --></mml:mi> <mml:mi>u</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>=</mml:mo> <mml:mo>±<!-- ± --></mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mi>u</mml:mi> <mml:msup> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>q</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:mi>u</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">B(u,\\nabla u)=\\pm |u|^{q-1}u</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, for <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"q greater-than 1\"> <mml:semantics> <mml:mrow> <mml:mi>q</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">q&gt;1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We next obtain global weighted-Lorentz, Lorentz-Morrey and Capacitary estimates on gradient of solutions with <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B identical-to 0\"> <mml:semantics> <mml:mrow> <mml:mi>B</mml:mi> <mml:mo>≡<!-- ≡ --></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">B\\equiv 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, under minimal conditions on the boundary of domain and on nonlinearity <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A\"> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding=\"application/x-tex\">A</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Finally, due to these estimates, we solve the existence problems with <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B left-parenthesis u comma nabla u right-parenthesis equals StartAbsoluteValue nabla u EndAbsoluteValue Superscript q\"> <mml:semantics> <mml:mrow> <mml:mi>B</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>u</mml:mi> <mml:mo>,</mml:mo> <mml:mi mathvariant=\"normal\">∇<!-- ∇ --></mml:mi> <mml:mi>u</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>=</mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mi mathvariant=\"normal\">∇<!-- ∇ --></mml:mi> <mml:mi>u</mml:mi> <mml:msup> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mi>q</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">B(u,\\nabla u)=|\\nabla u|^q</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"q greater-than 1\"> <mml:semantics> <mml:mrow> <mml:mi>q</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">q&gt;1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Potential Estimates and Quasilinear Parabolic Equations with Measure Data\",\"authors\":\"Quoc Hung Nguyen\",\"doi\":\"10.1090/memo/1449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this memoir, we study the existence and regularity of the quasilinear parabolic equations: <disp-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"u Subscript t Baseline minus d i v left-parenthesis upper A left-parenthesis x comma t comma nabla u right-parenthesis right-parenthesis equals upper B left-parenthesis u comma nabla u right-parenthesis plus mu comma\\\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>u</mml:mi> <mml:mi>t</mml:mi> </mml:msub> <mml:mo>−<!-- − --></mml:mo> <mml:mi>div</mml:mi> <mml:mo>⁡<!-- ⁡ --></mml:mo> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>A</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi mathvariant=\\\"normal\\\">∇<!-- ∇ --></mml:mi> <mml:mi>u</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>B</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>u</mml:mi> <mml:mo>,</mml:mo> <mml:mi mathvariant=\\\"normal\\\">∇<!-- ∇ --></mml:mi> <mml:mi>u</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo>+</mml:mo> <mml:mi>μ<!-- μ --></mml:mi> <mml:mo>,</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\begin{equation*} u_t-\\\\operatorname {div}(A(x,t,\\\\nabla u))=B(u,\\\\nabla u)+\\\\mu , \\\\end{equation*}</mml:annotation> </mml:semantics> </mml:math> </disp-formula> in either <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper R Superscript upper N plus 1\\\"> <mml:semantics> <mml:msup> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi> </mml:mrow> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi>N</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {R}^{N+1}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> or <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper R Superscript upper N Baseline times left-parenthesis 0 comma normal infinity right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi> </mml:mrow> <mml:mi>N</mml:mi> </mml:msup> <mml:mo>×<!-- × --></mml:mo> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {R}^N\\\\times (0,\\\\infty )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> or on a bounded domain <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Omega times left-parenthesis 0 comma upper T right-parenthesis subset-of double-struck upper R Superscript upper N plus 1\\\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\\\"normal\\\">Ω<!-- Ω --></mml:mi> <mml:mo>×<!-- × --></mml:mo> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>T</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo>⊂<!-- ⊂ --></mml:mo> <mml:msup> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi> </mml:mrow> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi>N</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Omega \\\\times (0,T)\\\\subset \\\\mathbb {R}^{N+1}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> where <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper N greater-than-or-equal-to 2\\\"> <mml:semantics> <mml:mrow> <mml:mi>N</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">N\\\\geq 2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We shall assume that the nonlinearity <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper A\\\"> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> fulfills standard growth conditions, the function <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper B\\\"> <mml:semantics> <mml:mi>B</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">B</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a continuous and <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"mu\\\"> <mml:semantics> <mml:mi>μ<!-- μ --></mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mu</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a radon measure. Our first task is to establish the existence results with <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper B left-parenthesis u comma nabla u right-parenthesis equals plus-or-minus StartAbsoluteValue u EndAbsoluteValue Superscript q minus 1 Baseline u\\\"> <mml:semantics> <mml:mrow> <mml:mi>B</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>u</mml:mi> <mml:mo>,</mml:mo> <mml:mi mathvariant=\\\"normal\\\">∇<!-- ∇ --></mml:mi> <mml:mi>u</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo>=</mml:mo> <mml:mo>±<!-- ± --></mml:mo> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mo stretchy=\\\"false\\\">|</mml:mo> </mml:mrow> <mml:mi>u</mml:mi> <mml:msup> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mo stretchy=\\\"false\\\">|</mml:mo> </mml:mrow> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi>q</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:mi>u</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">B(u,\\\\nabla u)=\\\\pm |u|^{q-1}u</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, for <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"q greater-than 1\\\"> <mml:semantics> <mml:mrow> <mml:mi>q</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">q&gt;1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We next obtain global weighted-Lorentz, Lorentz-Morrey and Capacitary estimates on gradient of solutions with <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper B identical-to 0\\\"> <mml:semantics> <mml:mrow> <mml:mi>B</mml:mi> <mml:mo>≡<!-- ≡ --></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">B\\\\equiv 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, under minimal conditions on the boundary of domain and on nonlinearity <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper A\\\"> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">A</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Finally, due to these estimates, we solve the existence problems with <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper B left-parenthesis u comma nabla u right-parenthesis equals StartAbsoluteValue nabla u EndAbsoluteValue Superscript q\\\"> <mml:semantics> <mml:mrow> <mml:mi>B</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>u</mml:mi> <mml:mo>,</mml:mo> <mml:mi mathvariant=\\\"normal\\\">∇<!-- ∇ --></mml:mi> <mml:mi>u</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo>=</mml:mo> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mo stretchy=\\\"false\\\">|</mml:mo> </mml:mrow> <mml:mi mathvariant=\\\"normal\\\">∇<!-- ∇ --></mml:mi> <mml:mi>u</mml:mi> <mml:msup> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mo stretchy=\\\"false\\\">|</mml:mo> </mml:mrow> <mml:mi>q</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">B(u,\\\\nabla u)=|\\\\nabla u|^q</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"q greater-than 1\\\"> <mml:semantics> <mml:mrow> <mml:mi>q</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">q&gt;1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/memo/1449\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/memo/1449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 32

摘要

在这篇回忆录中,我们研究了拟线性抛物方程的存在性和正则性:u t−div (A (x, t,∇u)) = B (u,∇u) + μ, \begin{equation*} u_t-\operatorname {div}(A(x,t,\nabla u))=B(u,\nabla u)+\mu , \end{equation*}在R N+1 \mathbb R{^}N+1{或R N ×(0,∞)}\mathbb R{^N }\times (0, \infty)或在有界域Ω x (0, t)∧R N+1 \Omega\times (0, t) \subset\mathbb R{^}N+1{其中N≥2 N }\geq 2。我们假设非线性A A满足标准生长条件,函数B B是连续的,μ \mu是氡测度。我们的第一个任务是建立B(u,∇u)=±|u| q−1u B(u, \nabla u)= \pm |u|^{q-1u}的存在性结果,对于q &gt;1 &gt;在最小条件下,在域边界和非线性A A上,我们得到了B≡0 B \equiv 0解梯度的全局加权lorentz、Lorentz-Morrey和Capacitary估计。最后,由于这些估计,我们解决了B(u,∇u)=|∇u| q B(u, \nabla u)=| \nabla u|^q对于q &gt的存在性问题;1 &gt;
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Potential Estimates and Quasilinear Parabolic Equations with Measure Data
In this memoir, we study the existence and regularity of the quasilinear parabolic equations: u t div ( A ( x , t , u ) ) = B ( u , u ) + μ , \begin{equation*} u_t-\operatorname {div}(A(x,t,\nabla u))=B(u,\nabla u)+\mu , \end{equation*} in either R N + 1 \mathbb {R}^{N+1} or R N × ( 0 , ) \mathbb {R}^N\times (0,\infty ) or on a bounded domain Ω × ( 0 , T ) R N + 1 \Omega \times (0,T)\subset \mathbb {R}^{N+1} where N 2 N\geq 2 . We shall assume that the nonlinearity A A fulfills standard growth conditions, the function B B is a continuous and μ \mu is a radon measure. Our first task is to establish the existence results with B ( u , u ) = ± | u | q 1 u B(u,\nabla u)=\pm |u|^{q-1}u , for q > 1 q>1 . We next obtain global weighted-Lorentz, Lorentz-Morrey and Capacitary estimates on gradient of solutions with B 0 B\equiv 0 , under minimal conditions on the boundary of domain and on nonlinearity A A . Finally, due to these estimates, we solve the existence problems with B ( u , u ) = | u | q B(u,\nabla u)=|\nabla u|^q for q > 1 q>1 .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信