以亚指数时间计算平面图上的周期

IF 0.9 4区 计算机科学 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Jin-Yi Cai, Ashwin Maran
{"title":"以亚指数时间计算平面图上的周期","authors":"Jin-Yi Cai,&nbsp;Ashwin Maran","doi":"10.1007/s00453-023-01182-4","DOIUrl":null,"url":null,"abstract":"<div><p>We study the problem of counting all cycles or self- avoiding walks (SAWs) on triangulated planar graphs. We present a subexponential <span>\\(2^{O(\\sqrt{n})}\\)</span> time algorithm for this counting problem. Among the technical ingredients used in this algorithm are the planar separator theorem and a delicate analysis using pairs of Motzkin paths and Motzkin numbers. We can then adapt this algorithm to uniformly sample SAWs, in subexponential time. Our work is motivated by the problem of gerrymandered districting maps.</p></div>","PeriodicalId":50824,"journal":{"name":"Algorithmica","volume":"86 2","pages":"656 - 693"},"PeriodicalIF":0.9000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Counting Cycles on Planar Graphs in Subexponential Time\",\"authors\":\"Jin-Yi Cai,&nbsp;Ashwin Maran\",\"doi\":\"10.1007/s00453-023-01182-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the problem of counting all cycles or self- avoiding walks (SAWs) on triangulated planar graphs. We present a subexponential <span>\\\\(2^{O(\\\\sqrt{n})}\\\\)</span> time algorithm for this counting problem. Among the technical ingredients used in this algorithm are the planar separator theorem and a delicate analysis using pairs of Motzkin paths and Motzkin numbers. We can then adapt this algorithm to uniformly sample SAWs, in subexponential time. Our work is motivated by the problem of gerrymandered districting maps.</p></div>\",\"PeriodicalId\":50824,\"journal\":{\"name\":\"Algorithmica\",\"volume\":\"86 2\",\"pages\":\"656 - 693\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algorithmica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00453-023-01182-4\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithmica","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s00453-023-01182-4","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了在三角形平面图上计算所有循环或自避行(SAW)的问题。我们为这个计数问题提出了一种亚指数(2^{O(\sqrt{n})}/)时间算法。该算法使用的技术要素包括平面分离定理以及使用莫兹金路径和莫兹金数对进行的精细分析。然后,我们可以调整该算法,在亚指数时间内对 SAW 进行均匀采样。我们的工作源于选区划分图问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Counting Cycles on Planar Graphs in Subexponential Time

Counting Cycles on Planar Graphs in Subexponential Time

Counting Cycles on Planar Graphs in Subexponential Time

We study the problem of counting all cycles or self- avoiding walks (SAWs) on triangulated planar graphs. We present a subexponential \(2^{O(\sqrt{n})}\) time algorithm for this counting problem. Among the technical ingredients used in this algorithm are the planar separator theorem and a delicate analysis using pairs of Motzkin paths and Motzkin numbers. We can then adapt this algorithm to uniformly sample SAWs, in subexponential time. Our work is motivated by the problem of gerrymandered districting maps.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algorithmica
Algorithmica 工程技术-计算机:软件工程
CiteScore
2.80
自引率
9.10%
发文量
158
审稿时长
12 months
期刊介绍: Algorithmica is an international journal which publishes theoretical papers on algorithms that address problems arising in practical areas, and experimental papers of general appeal for practical importance or techniques. The development of algorithms is an integral part of computer science. The increasing complexity and scope of computer applications makes the design of efficient algorithms essential. Algorithmica covers algorithms in applied areas such as: VLSI, distributed computing, parallel processing, automated design, robotics, graphics, data base design, software tools, as well as algorithms in fundamental areas such as sorting, searching, data structures, computational geometry, and linear programming. In addition, the journal features two special sections: Application Experience, presenting findings obtained from applications of theoretical results to practical situations, and Problems, offering short papers presenting problems on selected topics of computer science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信