{"title":"共轭热方程的无量纲Harnack不等式及其在几何流动中的应用","authors":"Li-Juan Cheng, Anton Thalmaier","doi":"10.2140/apde.2023.16.1589","DOIUrl":null,"url":null,"abstract":"Let $M$ be a differentiable manifold endowed with a family of complete Riemannian metrics $g(t)$ evolving under a geometric flow over the time interval $[0,T[$. In this article, we give a probabilistic representation for the derivative of the corresponding conjugate semigroup on $M$ which is generated by a Schr\\\"{o}dinger type operator. With the help of this derivative formula, we derive fundamental Harnack type inequalities in the setting of evolving Riemannian manifolds. In particular, we establish a dimension-free Harnack inequality and show how it can be used to achieve heat kernel upper bounds in the setting of moving metrics. Moreover, by means of the supercontractivity of the conjugate semigroup, we obtain a family of canonical log-Sobolev inequalities. We discuss and apply these results both in the case of the so-called modified Ricci flow and in the case of general geometric flows.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dimension-free Harnack inequalities for conjugate heat equations and their applications to geometric flows\",\"authors\":\"Li-Juan Cheng, Anton Thalmaier\",\"doi\":\"10.2140/apde.2023.16.1589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $M$ be a differentiable manifold endowed with a family of complete Riemannian metrics $g(t)$ evolving under a geometric flow over the time interval $[0,T[$. In this article, we give a probabilistic representation for the derivative of the corresponding conjugate semigroup on $M$ which is generated by a Schr\\\\\\\"{o}dinger type operator. With the help of this derivative formula, we derive fundamental Harnack type inequalities in the setting of evolving Riemannian manifolds. In particular, we establish a dimension-free Harnack inequality and show how it can be used to achieve heat kernel upper bounds in the setting of moving metrics. Moreover, by means of the supercontractivity of the conjugate semigroup, we obtain a family of canonical log-Sobolev inequalities. We discuss and apply these results both in the case of the so-called modified Ricci flow and in the case of general geometric flows.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/apde.2023.16.1589\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/apde.2023.16.1589","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Dimension-free Harnack inequalities for conjugate heat equations and their applications to geometric flows
Let $M$ be a differentiable manifold endowed with a family of complete Riemannian metrics $g(t)$ evolving under a geometric flow over the time interval $[0,T[$. In this article, we give a probabilistic representation for the derivative of the corresponding conjugate semigroup on $M$ which is generated by a Schr\"{o}dinger type operator. With the help of this derivative formula, we derive fundamental Harnack type inequalities in the setting of evolving Riemannian manifolds. In particular, we establish a dimension-free Harnack inequality and show how it can be used to achieve heat kernel upper bounds in the setting of moving metrics. Moreover, by means of the supercontractivity of the conjugate semigroup, we obtain a family of canonical log-Sobolev inequalities. We discuss and apply these results both in the case of the so-called modified Ricci flow and in the case of general geometric flows.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.