具有平面连接和一维Weingarten映射的余维二等仿射浸入

Q3 Mathematics
O. O. Shugailo
{"title":"具有平面连接和一维Weingarten映射的余维二等仿射浸入","authors":"O. O. Shugailo","doi":"10.30970/ms.60.1.99-112","DOIUrl":null,"url":null,"abstract":"In the paper we study equiaffine immersions $f\\colon (M^n,\\nabla) \\rightarrow {\\mathbb{R}}^{n+2}$ with flat connection $\\nabla$ and one-dimensional Weingarten mapping. For such immersions there are two types of the transversal distribution equiaffine frame.We give a parametrization of a submanifold with the given properties for both types of equiaffine frame. The main result of the paper is contained in Theorems 1, 2 and Corollary 1: Let $f\\colon ({M}^n,\\nabla)\\rightarrow({\\mathbb{R}}^{n+2},D)$ be an affine immersion with pointwise codimension 2, equiaffine structure, flat connection $\\nabla$, one-dimensional Weingarten mapping then there exists three types of its parametrization:$(i)$ $\\vec{r}=g(u^1,\\ldots,u^n) \\vec{a}_1+\\int\\vec{\\varphi}(u^1)du^1+\\sum\\limits_{i=2}^n u^i\\vec{a}_i;$$(ii)$ $\\vec{r}=(g(u^2,\\ldots,u^n)+u^1)\\vec{a}+\\int v(u^1) \\vec{\\eta}(u^1)du^1+\\sum\\limits_{i=2}^n u^i\\int\\lambda_i(u^1)\\vec{\\eta}(u^1)du^1;$$(iii)$ $\\vec{r}=(g(u^2,\\ldots,u^n)+u^1)\\vec{\\rho}(u^1)+\\int (v(u^1) - u^1)\\dfrac{d \\vec{\\rho}(u^1)}{d u^1}du^1+\\sum\\limits_{i=2}^n u^i\\int\\lambda_i(u^1)\\dfrac{d \\vec{\\rho}(u^1)}{d u^1}du^1.$","PeriodicalId":37555,"journal":{"name":"Matematychni Studii","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Equiaffine immersions of codimension two with flat connection and one-dimensional Weingarten mapping\",\"authors\":\"O. O. Shugailo\",\"doi\":\"10.30970/ms.60.1.99-112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the paper we study equiaffine immersions $f\\\\colon (M^n,\\\\nabla) \\\\rightarrow {\\\\mathbb{R}}^{n+2}$ with flat connection $\\\\nabla$ and one-dimensional Weingarten mapping. For such immersions there are two types of the transversal distribution equiaffine frame.We give a parametrization of a submanifold with the given properties for both types of equiaffine frame. The main result of the paper is contained in Theorems 1, 2 and Corollary 1: Let $f\\\\colon ({M}^n,\\\\nabla)\\\\rightarrow({\\\\mathbb{R}}^{n+2},D)$ be an affine immersion with pointwise codimension 2, equiaffine structure, flat connection $\\\\nabla$, one-dimensional Weingarten mapping then there exists three types of its parametrization:$(i)$ $\\\\vec{r}=g(u^1,\\\\ldots,u^n) \\\\vec{a}_1+\\\\int\\\\vec{\\\\varphi}(u^1)du^1+\\\\sum\\\\limits_{i=2}^n u^i\\\\vec{a}_i;$$(ii)$ $\\\\vec{r}=(g(u^2,\\\\ldots,u^n)+u^1)\\\\vec{a}+\\\\int v(u^1) \\\\vec{\\\\eta}(u^1)du^1+\\\\sum\\\\limits_{i=2}^n u^i\\\\int\\\\lambda_i(u^1)\\\\vec{\\\\eta}(u^1)du^1;$$(iii)$ $\\\\vec{r}=(g(u^2,\\\\ldots,u^n)+u^1)\\\\vec{\\\\rho}(u^1)+\\\\int (v(u^1) - u^1)\\\\dfrac{d \\\\vec{\\\\rho}(u^1)}{d u^1}du^1+\\\\sum\\\\limits_{i=2}^n u^i\\\\int\\\\lambda_i(u^1)\\\\dfrac{d \\\\vec{\\\\rho}(u^1)}{d u^1}du^1.$\",\"PeriodicalId\":37555,\"journal\":{\"name\":\"Matematychni Studii\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matematychni Studii\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30970/ms.60.1.99-112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matematychni Studii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30970/ms.60.1.99-112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文研究等仿射浸没 $f\colon (M^n,\nabla) \rightarrow {\mathbb{R}}^{n+2}$ 带平连接 $\nabla$ 和一维维因加滕映射。对于这种浸没,有两种类型的横向分布等仿框架。对于这两类等仿坐标系,我们给出了具有给定性质的子流形的参数化。本文的主要结果包含在定理1、定理2和推论1中 $f\colon ({M}^n,\nabla)\rightarrow({\mathbb{R}}^{n+2},D)$ 是一种仿射浸渍,具有点余维2,等仿射结构,平面连接 $\nabla$,则其参数化存在三种类型:$(i)$ $\vec{r}=g(u^1,\ldots,u^n) \vec{a}_1+\int\vec{\varphi}(u^1)du^1+\sum\limits_{i=2}^n u^i\vec{a}_i;$$(ii)$ $\vec{r}=(g(u^2,\ldots,u^n)+u^1)\vec{a}+\int v(u^1) \vec{\eta}(u^1)du^1+\sum\limits_{i=2}^n u^i\int\lambda_i(u^1)\vec{\eta}(u^1)du^1;$$(iii)$ $\vec{r}=(g(u^2,\ldots,u^n)+u^1)\vec{\rho}(u^1)+\int (v(u^1) - u^1)\dfrac{d \vec{\rho}(u^1)}{d u^1}du^1+\sum\limits_{i=2}^n u^i\int\lambda_i(u^1)\dfrac{d \vec{\rho}(u^1)}{d u^1}du^1.$
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Equiaffine immersions of codimension two with flat connection and one-dimensional Weingarten mapping
In the paper we study equiaffine immersions $f\colon (M^n,\nabla) \rightarrow {\mathbb{R}}^{n+2}$ with flat connection $\nabla$ and one-dimensional Weingarten mapping. For such immersions there are two types of the transversal distribution equiaffine frame.We give a parametrization of a submanifold with the given properties for both types of equiaffine frame. The main result of the paper is contained in Theorems 1, 2 and Corollary 1: Let $f\colon ({M}^n,\nabla)\rightarrow({\mathbb{R}}^{n+2},D)$ be an affine immersion with pointwise codimension 2, equiaffine structure, flat connection $\nabla$, one-dimensional Weingarten mapping then there exists three types of its parametrization:$(i)$ $\vec{r}=g(u^1,\ldots,u^n) \vec{a}_1+\int\vec{\varphi}(u^1)du^1+\sum\limits_{i=2}^n u^i\vec{a}_i;$$(ii)$ $\vec{r}=(g(u^2,\ldots,u^n)+u^1)\vec{a}+\int v(u^1) \vec{\eta}(u^1)du^1+\sum\limits_{i=2}^n u^i\int\lambda_i(u^1)\vec{\eta}(u^1)du^1;$$(iii)$ $\vec{r}=(g(u^2,\ldots,u^n)+u^1)\vec{\rho}(u^1)+\int (v(u^1) - u^1)\dfrac{d \vec{\rho}(u^1)}{d u^1}du^1+\sum\limits_{i=2}^n u^i\int\lambda_i(u^1)\dfrac{d \vec{\rho}(u^1)}{d u^1}du^1.$
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Matematychni Studii
Matematychni Studii Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
38
期刊介绍: Journal is devoted to research in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信