关于素环的广义同导

Q3 Mathematics
N. Rehman, E. K. Sogutcu, H. M. Alnoghashi
{"title":"关于素环的广义同导","authors":"N. Rehman, E. K. Sogutcu, H. M. Alnoghashi","doi":"10.30970/ms.60.1.12-27","DOIUrl":null,"url":null,"abstract":"Let $\\mathscr{A}$ be a ring with its center $\\mathscr{Z}(\\mathscr{A}).$ An additive mapping $\\xi\\colon \\mathscr{A}\\to \\mathscr{A}$ is called a homoderivation on $\\mathscr{A}$ if
 $\\forall\\ a,b\\in \\mathscr{A}\\colon\\quad \\xi(ab)=\\xi(a)\\xi(b)+\\xi(a)b+a\\xi(b).$
 An additive map $\\psi\\colon \\mathscr{A}\\to \\mathscr{A}$ is called a generalized homoderivation with associated homoderivation $\\xi$ on $\\mathscr{A}$ if
 $\\forall\\ a,b\\in \\mathscr{A}\\colon\\quad\\psi(ab)=\\psi(a)\\psi(b)+\\psi(a)b+a\\xi(b).$
 This study examines whether a prime ring $\\mathscr{A}$ with a generalized homoderivation $\\psi$ that fulfils specific algebraic identities is commutative. Precisely, we discuss the following identities:
 $\\psi(a)\\psi(b)+ab\\in \\mathscr{Z}(\\mathscr{A}),\\quad\\psi(a)\\psi(b)-ab\\in \\mathscr{Z}(\\mathscr{A}),\\quad\\psi(a)\\psi(b)+ab\\in \\mathscr{Z}(\\mathscr{A}),$
 $\\psi(a)\\psi(b)-ab\\in \\mathscr{Z}(\\mathscr{A}),\\quad\\psi(ab)+ab\\in \\mathscr{Z}(\\mathscr{A}),\\quad\\psi(ab)-ab\\in \\mathscr{Z}(\\mathscr{A}),$
 $\\psi(ab)+ba\\in \\mathscr{Z}(\\mathscr{A}),\\quad\\psi(ab)-ba\\in \\mathscr{Z}(\\mathscr{A})\\quad (\\forall\\ a, b\\in \\mathscr{A}).$
 Furthermore, examples are given to prove that the restrictions imposed on the hypothesis of the various theorems were not superfluous.","PeriodicalId":37555,"journal":{"name":"Matematychni Studii","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On generalized homoderivations of prime rings\",\"authors\":\"N. Rehman, E. K. Sogutcu, H. M. Alnoghashi\",\"doi\":\"10.30970/ms.60.1.12-27\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\mathscr{A}$ be a ring with its center $\\\\mathscr{Z}(\\\\mathscr{A}).$ An additive mapping $\\\\xi\\\\colon \\\\mathscr{A}\\\\to \\\\mathscr{A}$ is called a homoderivation on $\\\\mathscr{A}$ if
 $\\\\forall\\\\ a,b\\\\in \\\\mathscr{A}\\\\colon\\\\quad \\\\xi(ab)=\\\\xi(a)\\\\xi(b)+\\\\xi(a)b+a\\\\xi(b).$
 An additive map $\\\\psi\\\\colon \\\\mathscr{A}\\\\to \\\\mathscr{A}$ is called a generalized homoderivation with associated homoderivation $\\\\xi$ on $\\\\mathscr{A}$ if
 $\\\\forall\\\\ a,b\\\\in \\\\mathscr{A}\\\\colon\\\\quad\\\\psi(ab)=\\\\psi(a)\\\\psi(b)+\\\\psi(a)b+a\\\\xi(b).$
 This study examines whether a prime ring $\\\\mathscr{A}$ with a generalized homoderivation $\\\\psi$ that fulfils specific algebraic identities is commutative. Precisely, we discuss the following identities:
 $\\\\psi(a)\\\\psi(b)+ab\\\\in \\\\mathscr{Z}(\\\\mathscr{A}),\\\\quad\\\\psi(a)\\\\psi(b)-ab\\\\in \\\\mathscr{Z}(\\\\mathscr{A}),\\\\quad\\\\psi(a)\\\\psi(b)+ab\\\\in \\\\mathscr{Z}(\\\\mathscr{A}),$
 $\\\\psi(a)\\\\psi(b)-ab\\\\in \\\\mathscr{Z}(\\\\mathscr{A}),\\\\quad\\\\psi(ab)+ab\\\\in \\\\mathscr{Z}(\\\\mathscr{A}),\\\\quad\\\\psi(ab)-ab\\\\in \\\\mathscr{Z}(\\\\mathscr{A}),$
 $\\\\psi(ab)+ba\\\\in \\\\mathscr{Z}(\\\\mathscr{A}),\\\\quad\\\\psi(ab)-ba\\\\in \\\\mathscr{Z}(\\\\mathscr{A})\\\\quad (\\\\forall\\\\ a, b\\\\in \\\\mathscr{A}).$
 Furthermore, examples are given to prove that the restrictions imposed on the hypothesis of the various theorems were not superfluous.\",\"PeriodicalId\":37555,\"journal\":{\"name\":\"Matematychni Studii\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matematychni Studii\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30970/ms.60.1.12-27\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matematychni Studii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30970/ms.60.1.12-27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

设$\mathscr{A}$为一个以中心为中心的环$\mathscr{Z}(\mathscr{A}).$加性映射$\xi\colon \mathscr{A}\to \mathscr{A}$称为$\mathscr{A}$ if&#x0D上的同质导数;$\forall\ a,b\in \mathscr{A}\colon\quad \xi(ab)=\xi(a)\xi(b)+\xi(a)b+a\xi(b).$ 
在$\mathscr{A}$ if&#x0D上,一个可加映射$\psi\colon \mathscr{A}\to \mathscr{A}$被称为具有关联同质导数$\xi$的广义同质导数;$\forall\ a,b\in \mathscr{A}\colon\quad\psi(ab)=\psi(a)\psi(b)+\psi(a)b+a\xi(b).$ 
本文研究了一个满足特定代数恒等式的具有广义同导数$\psi$的素环$\mathscr{A}$是否可交换。确切地说,我们讨论下列恒等式:
$\psi(a)\psi(b)+ab\in \mathscr{Z}(\mathscr{A}),\quad\psi(a)\psi(b)-ab\in \mathscr{Z}(\mathscr{A}),\quad\psi(a)\psi(b)+ab\in \mathscr{Z}(\mathscr{A}),$ 
$\psi(a)\psi(b)-ab\in \mathscr{Z}(\mathscr{A}),\quad\psi(ab)+ab\in \mathscr{Z}(\mathscr{A}),\quad\psi(ab)-ab\in \mathscr{Z}(\mathscr{A}),$ 
$\psi(ab)+ba\in \mathscr{Z}(\mathscr{A}),\quad\psi(ab)-ba\in \mathscr{Z}(\mathscr{A})\quad (\forall\ a, b\in \mathscr{A}).$ 
并举例证明了对各定理的假设所加的限制并不是多余的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On generalized homoderivations of prime rings
Let $\mathscr{A}$ be a ring with its center $\mathscr{Z}(\mathscr{A}).$ An additive mapping $\xi\colon \mathscr{A}\to \mathscr{A}$ is called a homoderivation on $\mathscr{A}$ if $\forall\ a,b\in \mathscr{A}\colon\quad \xi(ab)=\xi(a)\xi(b)+\xi(a)b+a\xi(b).$ An additive map $\psi\colon \mathscr{A}\to \mathscr{A}$ is called a generalized homoderivation with associated homoderivation $\xi$ on $\mathscr{A}$ if $\forall\ a,b\in \mathscr{A}\colon\quad\psi(ab)=\psi(a)\psi(b)+\psi(a)b+a\xi(b).$ This study examines whether a prime ring $\mathscr{A}$ with a generalized homoderivation $\psi$ that fulfils specific algebraic identities is commutative. Precisely, we discuss the following identities: $\psi(a)\psi(b)+ab\in \mathscr{Z}(\mathscr{A}),\quad\psi(a)\psi(b)-ab\in \mathscr{Z}(\mathscr{A}),\quad\psi(a)\psi(b)+ab\in \mathscr{Z}(\mathscr{A}),$ $\psi(a)\psi(b)-ab\in \mathscr{Z}(\mathscr{A}),\quad\psi(ab)+ab\in \mathscr{Z}(\mathscr{A}),\quad\psi(ab)-ab\in \mathscr{Z}(\mathscr{A}),$ $\psi(ab)+ba\in \mathscr{Z}(\mathscr{A}),\quad\psi(ab)-ba\in \mathscr{Z}(\mathscr{A})\quad (\forall\ a, b\in \mathscr{A}).$ Furthermore, examples are given to prove that the restrictions imposed on the hypothesis of the various theorems were not superfluous.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Matematychni Studii
Matematychni Studii Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
38
期刊介绍: Journal is devoted to research in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信