Xutao Sun, Sinniah Ilanko, Yusuke Mochida, Rachael C. Tighe
{"title":"基于振动的土木结构损伤检测方法综述","authors":"Xutao Sun, Sinniah Ilanko, Yusuke Mochida, Rachael C. Tighe","doi":"10.3390/vibration6040051","DOIUrl":null,"url":null,"abstract":"Vibration-based damage detection is a range of methods that utilizes the dynamic response of a structure to evaluate its condition and detect damage. It is an important approach for structural health monitoring and has drawn much attention from researchers. While multiple reviews have been published focusing on different aspects of this field, there has not been a study specifically examining the recent development across the range of methods, including natural frequency, mode shape, modal curvature, modal strain energy, and modal flexibility-based damage detection methods. This paper aims to fill this gap by reviewing the recent application of these methods in civil structures, including beams, plates, trusses, frames, and composite structural members. The merits and limitations of each method are discussed, and research opportunities are presented. This broader review also provides an opportunity for critical comparison across this range of methods. While predominantly reviewing experiment-based studies, this review also considers some numerical studies that may motivate further research.","PeriodicalId":75301,"journal":{"name":"Vibration","volume":"58 1","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Review on Vibration-Based Damage Detection Methods for Civil Structures\",\"authors\":\"Xutao Sun, Sinniah Ilanko, Yusuke Mochida, Rachael C. Tighe\",\"doi\":\"10.3390/vibration6040051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vibration-based damage detection is a range of methods that utilizes the dynamic response of a structure to evaluate its condition and detect damage. It is an important approach for structural health monitoring and has drawn much attention from researchers. While multiple reviews have been published focusing on different aspects of this field, there has not been a study specifically examining the recent development across the range of methods, including natural frequency, mode shape, modal curvature, modal strain energy, and modal flexibility-based damage detection methods. This paper aims to fill this gap by reviewing the recent application of these methods in civil structures, including beams, plates, trusses, frames, and composite structural members. The merits and limitations of each method are discussed, and research opportunities are presented. This broader review also provides an opportunity for critical comparison across this range of methods. While predominantly reviewing experiment-based studies, this review also considers some numerical studies that may motivate further research.\",\"PeriodicalId\":75301,\"journal\":{\"name\":\"Vibration\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vibration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/vibration6040051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vibration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/vibration6040051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
A Review on Vibration-Based Damage Detection Methods for Civil Structures
Vibration-based damage detection is a range of methods that utilizes the dynamic response of a structure to evaluate its condition and detect damage. It is an important approach for structural health monitoring and has drawn much attention from researchers. While multiple reviews have been published focusing on different aspects of this field, there has not been a study specifically examining the recent development across the range of methods, including natural frequency, mode shape, modal curvature, modal strain energy, and modal flexibility-based damage detection methods. This paper aims to fill this gap by reviewing the recent application of these methods in civil structures, including beams, plates, trusses, frames, and composite structural members. The merits and limitations of each method are discussed, and research opportunities are presented. This broader review also provides an opportunity for critical comparison across this range of methods. While predominantly reviewing experiment-based studies, this review also considers some numerical studies that may motivate further research.