用单调多聚子平铺

Pub Date : 2023-10-11 DOI:10.1080/00029890.2023.2265284
István Tomon
{"title":"用单调多聚子平铺","authors":"István Tomon","doi":"10.1080/00029890.2023.2265284","DOIUrl":null,"url":null,"abstract":"AbstractA monotone polyomino is a set of grid cells pierced by a continuous monotone function f:[a,b]→R. We prove that the minimum number of monotone polyominos in a tiling of the n×n lattice square is n. Surprisingly, this turns out to be equivalent with the statement that every triangulation of the n×n lattice square into minimum lattice triangles contains at least 2n right angled triangles.MSC: 05B5005B45 ACKNOWLEDGMENTSThe author wishes to thank Christian Richter and the anonymous referees for their useful comments and suggestions.Additional informationNotes on contributorsIstván TomonISTVÁN TOMON received his Ph.D. in mathematics from the University of Cambridge. He spent several years as a postdoctoral student at the EPFL and ETH Zurich. Currently, he is an Associate Professor at Umeå University, pursuing research in combinatorics and related areas.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tiling with Monotone Polyominos\",\"authors\":\"István Tomon\",\"doi\":\"10.1080/00029890.2023.2265284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractA monotone polyomino is a set of grid cells pierced by a continuous monotone function f:[a,b]→R. We prove that the minimum number of monotone polyominos in a tiling of the n×n lattice square is n. Surprisingly, this turns out to be equivalent with the statement that every triangulation of the n×n lattice square into minimum lattice triangles contains at least 2n right angled triangles.MSC: 05B5005B45 ACKNOWLEDGMENTSThe author wishes to thank Christian Richter and the anonymous referees for their useful comments and suggestions.Additional informationNotes on contributorsIstván TomonISTVÁN TOMON received his Ph.D. in mathematics from the University of Cambridge. He spent several years as a postdoctoral student at the EPFL and ETH Zurich. Currently, he is an Associate Professor at Umeå University, pursuing research in combinatorics and related areas.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/00029890.2023.2265284\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00029890.2023.2265284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

单调多多项式是由连续单调函数f:[a,b]→R刺穿的网格单元集。我们证明了在n×n格子正方形的一个平铺中,单调多项式的最小数目是n。令人惊讶的是,这与下述陈述是等价的:n×n格子正方形的每一个三角剖分都包含至少2n个直角三角形。作者要感谢Christian Richter和匿名审稿人提供的有用的意见和建议。关于contributorsIstván TomonISTVÁN的说明TOMON在剑桥大学获得数学博士学位。他在EPFL和苏黎世联邦理工学院做了几年的博士后。目前,他是尤梅夫大学副教授,从事组合学及相关领域的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Tiling with Monotone Polyominos
AbstractA monotone polyomino is a set of grid cells pierced by a continuous monotone function f:[a,b]→R. We prove that the minimum number of monotone polyominos in a tiling of the n×n lattice square is n. Surprisingly, this turns out to be equivalent with the statement that every triangulation of the n×n lattice square into minimum lattice triangles contains at least 2n right angled triangles.MSC: 05B5005B45 ACKNOWLEDGMENTSThe author wishes to thank Christian Richter and the anonymous referees for their useful comments and suggestions.Additional informationNotes on contributorsIstván TomonISTVÁN TOMON received his Ph.D. in mathematics from the University of Cambridge. He spent several years as a postdoctoral student at the EPFL and ETH Zurich. Currently, he is an Associate Professor at Umeå University, pursuing research in combinatorics and related areas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信