用单调多聚子平铺

IF 0.4 4区 数学 Q4 MATHEMATICS
István Tomon
{"title":"用单调多聚子平铺","authors":"István Tomon","doi":"10.1080/00029890.2023.2265284","DOIUrl":null,"url":null,"abstract":"AbstractA monotone polyomino is a set of grid cells pierced by a continuous monotone function f:[a,b]→R. We prove that the minimum number of monotone polyominos in a tiling of the n×n lattice square is n. Surprisingly, this turns out to be equivalent with the statement that every triangulation of the n×n lattice square into minimum lattice triangles contains at least 2n right angled triangles.MSC: 05B5005B45 ACKNOWLEDGMENTSThe author wishes to thank Christian Richter and the anonymous referees for their useful comments and suggestions.Additional informationNotes on contributorsIstván TomonISTVÁN TOMON received his Ph.D. in mathematics from the University of Cambridge. He spent several years as a postdoctoral student at the EPFL and ETH Zurich. Currently, he is an Associate Professor at Umeå University, pursuing research in combinatorics and related areas.","PeriodicalId":7761,"journal":{"name":"American Mathematical Monthly","volume":"51 1","pages":"0"},"PeriodicalIF":0.4000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tiling with Monotone Polyominos\",\"authors\":\"István Tomon\",\"doi\":\"10.1080/00029890.2023.2265284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractA monotone polyomino is a set of grid cells pierced by a continuous monotone function f:[a,b]→R. We prove that the minimum number of monotone polyominos in a tiling of the n×n lattice square is n. Surprisingly, this turns out to be equivalent with the statement that every triangulation of the n×n lattice square into minimum lattice triangles contains at least 2n right angled triangles.MSC: 05B5005B45 ACKNOWLEDGMENTSThe author wishes to thank Christian Richter and the anonymous referees for their useful comments and suggestions.Additional informationNotes on contributorsIstván TomonISTVÁN TOMON received his Ph.D. in mathematics from the University of Cambridge. He spent several years as a postdoctoral student at the EPFL and ETH Zurich. Currently, he is an Associate Professor at Umeå University, pursuing research in combinatorics and related areas.\",\"PeriodicalId\":7761,\"journal\":{\"name\":\"American Mathematical Monthly\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Mathematical Monthly\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/00029890.2023.2265284\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Mathematical Monthly","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00029890.2023.2265284","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

单调多多项式是由连续单调函数f:[a,b]→R刺穿的网格单元集。我们证明了在n×n格子正方形的一个平铺中,单调多项式的最小数目是n。令人惊讶的是,这与下述陈述是等价的:n×n格子正方形的每一个三角剖分都包含至少2n个直角三角形。作者要感谢Christian Richter和匿名审稿人提供的有用的意见和建议。关于contributorsIstván TomonISTVÁN的说明TOMON在剑桥大学获得数学博士学位。他在EPFL和苏黎世联邦理工学院做了几年的博士后。目前,他是尤梅夫大学副教授,从事组合学及相关领域的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tiling with Monotone Polyominos
AbstractA monotone polyomino is a set of grid cells pierced by a continuous monotone function f:[a,b]→R. We prove that the minimum number of monotone polyominos in a tiling of the n×n lattice square is n. Surprisingly, this turns out to be equivalent with the statement that every triangulation of the n×n lattice square into minimum lattice triangles contains at least 2n right angled triangles.MSC: 05B5005B45 ACKNOWLEDGMENTSThe author wishes to thank Christian Richter and the anonymous referees for their useful comments and suggestions.Additional informationNotes on contributorsIstván TomonISTVÁN TOMON received his Ph.D. in mathematics from the University of Cambridge. He spent several years as a postdoctoral student at the EPFL and ETH Zurich. Currently, he is an Associate Professor at Umeå University, pursuing research in combinatorics and related areas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
American Mathematical Monthly
American Mathematical Monthly Mathematics-General Mathematics
CiteScore
0.80
自引率
20.00%
发文量
127
审稿时长
6-12 weeks
期刊介绍: The Monthly''s readers expect a high standard of exposition; they look for articles that inform, stimulate, challenge, enlighten, and even entertain. Monthly articles are meant to be read, enjoyed, and discussed, rather than just archived. Articles may be expositions of old or new results, historical or biographical essays, speculations or definitive treatments, broad developments, or explorations of a single application. Novelty and generality are far less important than clarity of exposition and broad appeal. Appropriate figures, diagrams, and photographs are encouraged. Notes are short, sharply focused, and possibly informal. They are often gems that provide a new proof of an old theorem, a novel presentation of a familiar theme, or a lively discussion of a single issue. Abstracts for articles or notes should entice the prospective reader into exploring the subject of the paper and should make it clear to the reader why this paper is interesting and important. The abstract should highlight the concepts of the paper rather than summarize the mechanics. The abstract is the first impression of the paper, not a technical summary of the paper. Excessive use of notation is discouraged as it can limit the interest of the broad readership of the MAA, and can limit search-ability of the article.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信