{"title":"叶片-叶尖/机匣接触强迫响应问题孤立周期解的计算","authors":"Thibaut Vadcard, Fabrice Thouverez, Alain Batailly","doi":"10.1115/1.4063704","DOIUrl":null,"url":null,"abstract":"Abstract This article introduces a numerical procedure dedicated to the identification of isolated branches of solutions for nonlinear mechanical systems. It is here applied to a fan blade subject to rubbing interactions and harmonic forcing. Both contact, which is initiated by means of the harmonic forcing, and dry friction are accounted for. The presented procedure relies on the computation of the system's nonlinear normal modes and their analysis through the application of an energy principle derived from the Melnikov function. The dynamic Lagrangian frequency-time strategy associated with the harmonic balance method (DLFT-HBM) is used to predict the blade's dynamics response as well as to compute the autonomous nonlinear normal modes. The open industrial fan blade NASA rotor 67 is employed in order to avoid confidentiality issues and to promote the reproducibility of the presented results. Previous publications have underlined the complexity of NASA rotor 67's dynamics response as it undergoes structural contacts, thus making it an ideal benchmark blade when searching for isolated solutions. The application of the presented procedure considering a varying amplitude of the harmonic forcing allows to predict isolated branches of solutions featuring nonlinear resonances. With the use of the Melnikov energy principle, nonlinear modal interactions are shown to be responsible for the separation of branches of solutions from the main response curve. In the end, the application of the presented procedure on an industrial blade model with contact interactions demonstrates it is both industry-ready and applicable to highly nonlinear mechanical systems.","PeriodicalId":15685,"journal":{"name":"Journal of Engineering for Gas Turbines and Power-transactions of The Asme","volume":"48 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computation of Isolated Periodic Solutions for Forced Response Blade-Tip/Casing Contact Problems\",\"authors\":\"Thibaut Vadcard, Fabrice Thouverez, Alain Batailly\",\"doi\":\"10.1115/1.4063704\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This article introduces a numerical procedure dedicated to the identification of isolated branches of solutions for nonlinear mechanical systems. It is here applied to a fan blade subject to rubbing interactions and harmonic forcing. Both contact, which is initiated by means of the harmonic forcing, and dry friction are accounted for. The presented procedure relies on the computation of the system's nonlinear normal modes and their analysis through the application of an energy principle derived from the Melnikov function. The dynamic Lagrangian frequency-time strategy associated with the harmonic balance method (DLFT-HBM) is used to predict the blade's dynamics response as well as to compute the autonomous nonlinear normal modes. The open industrial fan blade NASA rotor 67 is employed in order to avoid confidentiality issues and to promote the reproducibility of the presented results. Previous publications have underlined the complexity of NASA rotor 67's dynamics response as it undergoes structural contacts, thus making it an ideal benchmark blade when searching for isolated solutions. The application of the presented procedure considering a varying amplitude of the harmonic forcing allows to predict isolated branches of solutions featuring nonlinear resonances. With the use of the Melnikov energy principle, nonlinear modal interactions are shown to be responsible for the separation of branches of solutions from the main response curve. In the end, the application of the presented procedure on an industrial blade model with contact interactions demonstrates it is both industry-ready and applicable to highly nonlinear mechanical systems.\",\"PeriodicalId\":15685,\"journal\":{\"name\":\"Journal of Engineering for Gas Turbines and Power-transactions of The Asme\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering for Gas Turbines and Power-transactions of The Asme\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063704\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering for Gas Turbines and Power-transactions of The Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063704","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Computation of Isolated Periodic Solutions for Forced Response Blade-Tip/Casing Contact Problems
Abstract This article introduces a numerical procedure dedicated to the identification of isolated branches of solutions for nonlinear mechanical systems. It is here applied to a fan blade subject to rubbing interactions and harmonic forcing. Both contact, which is initiated by means of the harmonic forcing, and dry friction are accounted for. The presented procedure relies on the computation of the system's nonlinear normal modes and their analysis through the application of an energy principle derived from the Melnikov function. The dynamic Lagrangian frequency-time strategy associated with the harmonic balance method (DLFT-HBM) is used to predict the blade's dynamics response as well as to compute the autonomous nonlinear normal modes. The open industrial fan blade NASA rotor 67 is employed in order to avoid confidentiality issues and to promote the reproducibility of the presented results. Previous publications have underlined the complexity of NASA rotor 67's dynamics response as it undergoes structural contacts, thus making it an ideal benchmark blade when searching for isolated solutions. The application of the presented procedure considering a varying amplitude of the harmonic forcing allows to predict isolated branches of solutions featuring nonlinear resonances. With the use of the Melnikov energy principle, nonlinear modal interactions are shown to be responsible for the separation of branches of solutions from the main response curve. In the end, the application of the presented procedure on an industrial blade model with contact interactions demonstrates it is both industry-ready and applicable to highly nonlinear mechanical systems.
期刊介绍:
The ASME Journal of Engineering for Gas Turbines and Power publishes archival-quality papers in the areas of gas and steam turbine technology, nuclear engineering, internal combustion engines, and fossil power generation. It covers a broad spectrum of practical topics of interest to industry. Subject areas covered include: thermodynamics; fluid mechanics; heat transfer; and modeling; propulsion and power generation components and systems; combustion, fuels, and emissions; nuclear reactor systems and components; thermal hydraulics; heat exchangers; nuclear fuel technology and waste management; I. C. engines for marine, rail, and power generation; steam and hydro power generation; advanced cycles for fossil energy generation; pollution control and environmental effects.