含孔洞的广义热微拉伸弹性固体中的波传播

IF 2.6 3区 工程技术 Q2 MECHANICS
Manisha Garg, Dilbag Singh, S. K. Tomar
{"title":"含孔洞的广义热微拉伸弹性固体中的波传播","authors":"Manisha Garg, Dilbag Singh, S. K. Tomar","doi":"10.1080/01495739.2023.2256814","DOIUrl":null,"url":null,"abstract":"AbstractA linear theory of generalized thermo-microstretch elastic solid containing voids is formulated. Lord and Shulman [2] theory of thermoelasticity is employed to incorporate thermal effects. Free energy density function is constructed to develop the constitutive relations and field equations for an isotropic homogeneous generalized thermo-microstretch elastic solid containing voids. The possibility of propagation of plane waves is investigated in the medium of infinite extent. It is found that there may exist four sets of coupled longitudinal waves, two sets of coupled transverse waves and an independent longitudinal microrotational wave traveling with distinct speeds. Each set of coupled longitudinal waves is found to be attenuating and dispersive in nature, while an independent longitudinal microrotational wave and the remaining two sets of coupled transverse waves are found to be dispersive but non-attenuating in nature. All the possible waves are influenced by the polar property of the medium; however, all the coupled longitudinal waves are influenced by the stretch, voids and thermal properties of the medium. It is also found that all coupled longitudinal waves exist for all non-negative frequencies, while the independent longitudinal microrotational wave and one of the sets of coupled transverse waves exist only after certain cutoff frequency.Keywords: Dispersionmicrostretchplane wavesrelaxation timethermalvoids Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingMs. Manisha is grateful to the Council of Scientific and Industrial Research, New Delhi for providing financial support in the form of Senior Research Fellowship through Grant no. F.09/135(0869)/2019-EMR-I. While Dr Dilbag Singh is grateful to the University Grants Commission and Department of Science and Technology, New Delhi for providing financial assistance through Start-Up Grant no. F.4-5 (69-FRP)/2014(BSR) and DST-FIST Grant no. SR/FST/MS-II/2019/43 to complete this study.","PeriodicalId":54759,"journal":{"name":"Journal of Thermal Stresses","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wave propagation in generalized thermo-microstretch elastic solid containing voids\",\"authors\":\"Manisha Garg, Dilbag Singh, S. K. Tomar\",\"doi\":\"10.1080/01495739.2023.2256814\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractA linear theory of generalized thermo-microstretch elastic solid containing voids is formulated. Lord and Shulman [2] theory of thermoelasticity is employed to incorporate thermal effects. Free energy density function is constructed to develop the constitutive relations and field equations for an isotropic homogeneous generalized thermo-microstretch elastic solid containing voids. The possibility of propagation of plane waves is investigated in the medium of infinite extent. It is found that there may exist four sets of coupled longitudinal waves, two sets of coupled transverse waves and an independent longitudinal microrotational wave traveling with distinct speeds. Each set of coupled longitudinal waves is found to be attenuating and dispersive in nature, while an independent longitudinal microrotational wave and the remaining two sets of coupled transverse waves are found to be dispersive but non-attenuating in nature. All the possible waves are influenced by the polar property of the medium; however, all the coupled longitudinal waves are influenced by the stretch, voids and thermal properties of the medium. It is also found that all coupled longitudinal waves exist for all non-negative frequencies, while the independent longitudinal microrotational wave and one of the sets of coupled transverse waves exist only after certain cutoff frequency.Keywords: Dispersionmicrostretchplane wavesrelaxation timethermalvoids Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingMs. Manisha is grateful to the Council of Scientific and Industrial Research, New Delhi for providing financial support in the form of Senior Research Fellowship through Grant no. F.09/135(0869)/2019-EMR-I. While Dr Dilbag Singh is grateful to the University Grants Commission and Department of Science and Technology, New Delhi for providing financial assistance through Start-Up Grant no. F.4-5 (69-FRP)/2014(BSR) and DST-FIST Grant no. SR/FST/MS-II/2019/43 to complete this study.\",\"PeriodicalId\":54759,\"journal\":{\"name\":\"Journal of Thermal Stresses\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermal Stresses\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/01495739.2023.2256814\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Stresses","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/01495739.2023.2256814","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要建立了含孔洞的广义热微拉伸弹性固体的线性理论。采用Lord和Shulman[2]热弹性理论纳入热效应。构造了自由能量密度函数,建立了含空洞的各向同性广义热微拉伸弹性固体的本构关系和场方程。研究了平面波在无限宽介质中传播的可能性。发现可能存在四组耦合纵波、两组耦合横波和一个独立的以不同速度传播的纵向微旋波。发现每组耦合纵波具有衰减性和色散性,而一个独立的纵向微旋波和其余两组耦合横波具有色散性但不具有衰减性。所有可能的波都受介质极性特性的影响;然而,所有的耦合纵波都受到介质的拉伸、空隙和热性质的影响。在非负频率下,所有的耦合纵波都存在,而独立的纵向微旋波和一组耦合横波只有在一定的截止频率后才存在。关键词:色散、微拉伸、平面波、松弛时间、热真空披露声明作者未报告潜在利益冲突。额外的informationFundingMs。Manisha非常感谢新德里科学和工业研究委员会通过第1号拨款以高级研究奖学金的形式提供财政支持。F.09/135 (0869) / 2019 - emr——我。迪尔巴格·辛格博士感谢大学教育资助委员会和新德里科学技术部通过启动赠款第1号提供财政援助。F.4-5 (69-FRP)/2014(BSR)和st - fist批准号。SR/FST/MS-II/2019/43完成本研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wave propagation in generalized thermo-microstretch elastic solid containing voids
AbstractA linear theory of generalized thermo-microstretch elastic solid containing voids is formulated. Lord and Shulman [2] theory of thermoelasticity is employed to incorporate thermal effects. Free energy density function is constructed to develop the constitutive relations and field equations for an isotropic homogeneous generalized thermo-microstretch elastic solid containing voids. The possibility of propagation of plane waves is investigated in the medium of infinite extent. It is found that there may exist four sets of coupled longitudinal waves, two sets of coupled transverse waves and an independent longitudinal microrotational wave traveling with distinct speeds. Each set of coupled longitudinal waves is found to be attenuating and dispersive in nature, while an independent longitudinal microrotational wave and the remaining two sets of coupled transverse waves are found to be dispersive but non-attenuating in nature. All the possible waves are influenced by the polar property of the medium; however, all the coupled longitudinal waves are influenced by the stretch, voids and thermal properties of the medium. It is also found that all coupled longitudinal waves exist for all non-negative frequencies, while the independent longitudinal microrotational wave and one of the sets of coupled transverse waves exist only after certain cutoff frequency.Keywords: Dispersionmicrostretchplane wavesrelaxation timethermalvoids Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingMs. Manisha is grateful to the Council of Scientific and Industrial Research, New Delhi for providing financial support in the form of Senior Research Fellowship through Grant no. F.09/135(0869)/2019-EMR-I. While Dr Dilbag Singh is grateful to the University Grants Commission and Department of Science and Technology, New Delhi for providing financial assistance through Start-Up Grant no. F.4-5 (69-FRP)/2014(BSR) and DST-FIST Grant no. SR/FST/MS-II/2019/43 to complete this study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Thermal Stresses
Journal of Thermal Stresses 工程技术-力学
CiteScore
5.20
自引率
7.10%
发文量
58
审稿时长
3 months
期刊介绍: The first international journal devoted exclusively to the subject, Journal of Thermal Stresses publishes refereed articles on the theoretical and industrial applications of thermal stresses. Intended as a forum for those engaged in analytic as well as experimental research, this monthly journal includes papers on mathematical and practical applications. Emphasis is placed on new developments in thermoelasticity, thermoplasticity, and theory and applications of thermal stresses. Papers on experimental methods and on numerical methods, including finite element methods, are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信