{"title":"计算能力网络中高效节能联合学习的博弈激励机制","authors":"Xiao Lin , Ruolin Wu , Haibo Mei , Kun Yang","doi":"10.1016/j.dcan.2023.10.006","DOIUrl":null,"url":null,"abstract":"<div><div>Computing Power Network (CPN) is emerging as one of the important research interests in beyond 5G (B5G) or 6G. This paper constructs a CPN based on Federated Learning (FL), where all Multi-access Edge Computing (MEC) servers are linked to a computing power center via wireless links. Through this FL procedure, each MEC server in CPN can independently train the learning models using localized data, thus preserving data privacy. However, it is challenging to motivate MEC servers to participate in the FL process in an efficient way and difficult to ensure energy efficiency for MEC servers. To address these issues, we first introduce an incentive mechanism using the Stackelberg game framework to motivate MEC servers. Afterwards, we formulate a comprehensive algorithm to jointly optimize the communication resource (wireless bandwidth and transmission power) allocations and the computation resource (computation capacity of MEC servers) allocations while ensuring the local accuracy of the training of each MEC server. The numerical data validates that the proposed incentive mechanism and joint optimization algorithm do improve the energy efficiency and performance of the considered CPN.</div></div>","PeriodicalId":48631,"journal":{"name":"Digital Communications and Networks","volume":"10 6","pages":"Pages 1741-1747"},"PeriodicalIF":7.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A game incentive mechanism for energy efficient federated learning in computing power networks\",\"authors\":\"Xiao Lin , Ruolin Wu , Haibo Mei , Kun Yang\",\"doi\":\"10.1016/j.dcan.2023.10.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Computing Power Network (CPN) is emerging as one of the important research interests in beyond 5G (B5G) or 6G. This paper constructs a CPN based on Federated Learning (FL), where all Multi-access Edge Computing (MEC) servers are linked to a computing power center via wireless links. Through this FL procedure, each MEC server in CPN can independently train the learning models using localized data, thus preserving data privacy. However, it is challenging to motivate MEC servers to participate in the FL process in an efficient way and difficult to ensure energy efficiency for MEC servers. To address these issues, we first introduce an incentive mechanism using the Stackelberg game framework to motivate MEC servers. Afterwards, we formulate a comprehensive algorithm to jointly optimize the communication resource (wireless bandwidth and transmission power) allocations and the computation resource (computation capacity of MEC servers) allocations while ensuring the local accuracy of the training of each MEC server. The numerical data validates that the proposed incentive mechanism and joint optimization algorithm do improve the energy efficiency and performance of the considered CPN.</div></div>\",\"PeriodicalId\":48631,\"journal\":{\"name\":\"Digital Communications and Networks\",\"volume\":\"10 6\",\"pages\":\"Pages 1741-1747\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Communications and Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352864823001566\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352864823001566","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
A game incentive mechanism for energy efficient federated learning in computing power networks
Computing Power Network (CPN) is emerging as one of the important research interests in beyond 5G (B5G) or 6G. This paper constructs a CPN based on Federated Learning (FL), where all Multi-access Edge Computing (MEC) servers are linked to a computing power center via wireless links. Through this FL procedure, each MEC server in CPN can independently train the learning models using localized data, thus preserving data privacy. However, it is challenging to motivate MEC servers to participate in the FL process in an efficient way and difficult to ensure energy efficiency for MEC servers. To address these issues, we first introduce an incentive mechanism using the Stackelberg game framework to motivate MEC servers. Afterwards, we formulate a comprehensive algorithm to jointly optimize the communication resource (wireless bandwidth and transmission power) allocations and the computation resource (computation capacity of MEC servers) allocations while ensuring the local accuracy of the training of each MEC server. The numerical data validates that the proposed incentive mechanism and joint optimization algorithm do improve the energy efficiency and performance of the considered CPN.
期刊介绍:
Digital Communications and Networks is a prestigious journal that emphasizes on communication systems and networks. We publish only top-notch original articles and authoritative reviews, which undergo rigorous peer-review. We are proud to announce that all our articles are fully Open Access and can be accessed on ScienceDirect. Our journal is recognized and indexed by eminent databases such as the Science Citation Index Expanded (SCIE) and Scopus.
In addition to regular articles, we may also consider exceptional conference papers that have been significantly expanded. Furthermore, we periodically release special issues that focus on specific aspects of the field.
In conclusion, Digital Communications and Networks is a leading journal that guarantees exceptional quality and accessibility for researchers and scholars in the field of communication systems and networks.