不同燃油温度下柴油机喷嘴内空化现象的研究

IF 1.9 4区 工程技术 Q3 ENGINEERING, MECHANICAL
Tianyi Cao, Zhixia He, Jianquan Wang
{"title":"不同燃油温度下柴油机喷嘴内空化现象的研究","authors":"Tianyi Cao, Zhixia He, Jianquan Wang","doi":"10.1177/16878132231202867","DOIUrl":null,"url":null,"abstract":"Two-phase cavitating flow in the diesel nozzle has been widely concerned by researchers for a long time. Most of the attention has been paid to irregular geometry-induced cavitation, while the research on string cavitation induced by vortex is relatively less. The two cavitating patterns often occur simultaneously in the nozzle, which are still not understandable for their interaction characteristics. In this paper, it is analyzed that the characteristics of string cavitation and geometry-induced cavitation in the transparent nozzle based on the visual scale-up test bench. In the study of hole-to-hole string cavitation, it is found that when needle lifts elevate, geometry-induced cavitation and hole-to-hole string cavitation are observed all together under the same working condition. The development and stability of hole-to-hole string cavitation are further improved with the increase of fuel temperature. The geometry-induced cavitation and string cavitation interact with each other, that is, geometry-induced cavitation at the nozzle inlet interrupts the hole-to-hole string cavitation inception. The tail of hole-to-hole string cavitation is disturbed by cloud cavitation shedding after its developing into the nozzle hole, leading to fracture in serious cases. At high temperatures, there is a periodic transformation between the needle-originated string cavitation and hole-to-hole string cavitation.","PeriodicalId":49110,"journal":{"name":"Advances in Mechanical Engineering","volume":"36 1","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of cavitation phenomenon with different fuel temperatures in diesel nozzles\",\"authors\":\"Tianyi Cao, Zhixia He, Jianquan Wang\",\"doi\":\"10.1177/16878132231202867\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two-phase cavitating flow in the diesel nozzle has been widely concerned by researchers for a long time. Most of the attention has been paid to irregular geometry-induced cavitation, while the research on string cavitation induced by vortex is relatively less. The two cavitating patterns often occur simultaneously in the nozzle, which are still not understandable for their interaction characteristics. In this paper, it is analyzed that the characteristics of string cavitation and geometry-induced cavitation in the transparent nozzle based on the visual scale-up test bench. In the study of hole-to-hole string cavitation, it is found that when needle lifts elevate, geometry-induced cavitation and hole-to-hole string cavitation are observed all together under the same working condition. The development and stability of hole-to-hole string cavitation are further improved with the increase of fuel temperature. The geometry-induced cavitation and string cavitation interact with each other, that is, geometry-induced cavitation at the nozzle inlet interrupts the hole-to-hole string cavitation inception. The tail of hole-to-hole string cavitation is disturbed by cloud cavitation shedding after its developing into the nozzle hole, leading to fracture in serious cases. At high temperatures, there is a periodic transformation between the needle-originated string cavitation and hole-to-hole string cavitation.\",\"PeriodicalId\":49110,\"journal\":{\"name\":\"Advances in Mechanical Engineering\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/16878132231202867\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/16878132231202867","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

柴油喷管内的两相空化流动一直受到研究者的广泛关注。目前对不规则几何引起的空化研究较多,而对涡旋引起的弦状空化研究相对较少。两种空化模式经常在喷嘴内同时发生,但由于它们的相互作用特性,仍然不能理解。本文在可视化放大试验台的基础上,分析了透明喷管串状空化和几何诱导空化的特性。在钻柱间空化研究中发现,在相同工况下,当钻柱举升时,同时存在几何诱导空化和钻柱间空化现象。随着燃料温度的升高,井间空化的发展和稳定性进一步改善。几何诱导的空化与管柱空化相互作用,即喷嘴入口处的几何诱导空化阻断了管柱间空化的形成。井间管柱空化在进入喷嘴孔后,尾部会受到云空化脱落的干扰,严重时导致断裂。在高温下,由针引起的管柱空化与井间空化之间存在周期性转变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of cavitation phenomenon with different fuel temperatures in diesel nozzles
Two-phase cavitating flow in the diesel nozzle has been widely concerned by researchers for a long time. Most of the attention has been paid to irregular geometry-induced cavitation, while the research on string cavitation induced by vortex is relatively less. The two cavitating patterns often occur simultaneously in the nozzle, which are still not understandable for their interaction characteristics. In this paper, it is analyzed that the characteristics of string cavitation and geometry-induced cavitation in the transparent nozzle based on the visual scale-up test bench. In the study of hole-to-hole string cavitation, it is found that when needle lifts elevate, geometry-induced cavitation and hole-to-hole string cavitation are observed all together under the same working condition. The development and stability of hole-to-hole string cavitation are further improved with the increase of fuel temperature. The geometry-induced cavitation and string cavitation interact with each other, that is, geometry-induced cavitation at the nozzle inlet interrupts the hole-to-hole string cavitation inception. The tail of hole-to-hole string cavitation is disturbed by cloud cavitation shedding after its developing into the nozzle hole, leading to fracture in serious cases. At high temperatures, there is a periodic transformation between the needle-originated string cavitation and hole-to-hole string cavitation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mechanical Engineering
Advances in Mechanical Engineering 工程技术-机械工程
CiteScore
3.60
自引率
4.80%
发文量
353
审稿时长
6-12 weeks
期刊介绍: Advances in Mechanical Engineering (AIME) is a JCR Ranked, peer-reviewed, open access journal which publishes a wide range of original research and review articles. The journal Editorial Board welcomes manuscripts in both fundamental and applied research areas, and encourages submissions which contribute novel and innovative insights to the field of mechanical engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信