Hao Wang , Jie Jiang , Pengyu Chen , Zhenrui Wu , Xiaobin Niu , Chuying Ouyang , Jian Liu , Liping Wang
{"title":"锂离子与溶剂共插层提高了氟化石墨烯阴极的能量密度","authors":"Hao Wang , Jie Jiang , Pengyu Chen , Zhenrui Wu , Xiaobin Niu , Chuying Ouyang , Jian Liu , Liping Wang","doi":"10.1016/j.jechem.2023.10.019","DOIUrl":null,"url":null,"abstract":"<div><p>Fluorinated carbons CF<em><sub>x</sub></em> hold the highest theoretical energy density (e.g., 2180 W h kg<sup>−1</sup> when <em>x</em> = 1) among all cathode materials of lithium primary batteries. However, the low conductivity and severe polarization limit it to achieve its theory. In this study, we design a new electrolyte, namely 1 M LiBF<sub>4</sub> DMSO:DOL (1:9 vol.), achieving a high energy density in Li/CF<em><sub>x</sub></em> primary cells. The DMSO with a small molecular size and high donor number successfully solvates Li<sup>+</sup> into a defined Li<sup>+</sup>-solvation structure. Such solvated Li<sup>+</sup> can intercalate into the large-spacing carbon layers and achieve an improved capacity. Consequently, when discharged to 1.0 V, the CF<sub>1.12</sub> cathode demonstrates a specific capacity of 1944 mA h g<sup>−1</sup> with a specific energy density of 3793 W h kg<sup>−1</sup>. This strategy demonstrates that designing the electrolyte is powerful in improving the electrochemical performance of CF<em><sub>x</sub></em> cathode.</p></div>","PeriodicalId":67498,"journal":{"name":"能源化学","volume":"89 ","pages":"Pages 208-215"},"PeriodicalIF":14.0000,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lithium-ion and solvent co-intercalation enhancing the energy density of fluorinated graphene cathode\",\"authors\":\"Hao Wang , Jie Jiang , Pengyu Chen , Zhenrui Wu , Xiaobin Niu , Chuying Ouyang , Jian Liu , Liping Wang\",\"doi\":\"10.1016/j.jechem.2023.10.019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Fluorinated carbons CF<em><sub>x</sub></em> hold the highest theoretical energy density (e.g., 2180 W h kg<sup>−1</sup> when <em>x</em> = 1) among all cathode materials of lithium primary batteries. However, the low conductivity and severe polarization limit it to achieve its theory. In this study, we design a new electrolyte, namely 1 M LiBF<sub>4</sub> DMSO:DOL (1:9 vol.), achieving a high energy density in Li/CF<em><sub>x</sub></em> primary cells. The DMSO with a small molecular size and high donor number successfully solvates Li<sup>+</sup> into a defined Li<sup>+</sup>-solvation structure. Such solvated Li<sup>+</sup> can intercalate into the large-spacing carbon layers and achieve an improved capacity. Consequently, when discharged to 1.0 V, the CF<sub>1.12</sub> cathode demonstrates a specific capacity of 1944 mA h g<sup>−1</sup> with a specific energy density of 3793 W h kg<sup>−1</sup>. This strategy demonstrates that designing the electrolyte is powerful in improving the electrochemical performance of CF<em><sub>x</sub></em> cathode.</p></div>\",\"PeriodicalId\":67498,\"journal\":{\"name\":\"能源化学\",\"volume\":\"89 \",\"pages\":\"Pages 208-215\"},\"PeriodicalIF\":14.0000,\"publicationDate\":\"2023-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"能源化学\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095495623005910\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"能源化学","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495623005910","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
在锂原电池正极材料中,氟化碳CFx的理论能量密度最高(x = 1时为2180 W h kg-1)。然而,低电导率和严重极化限制了其理论的实现。在这项研究中,我们设计了一种新的电解质,即1 M LiBF4 DMSO:DOL (1:9 vol.),在Li/CFx原电池中实现了高能量密度。具有小分子尺寸和高供体数的DMSO成功地将Li+溶剂化成明确的Li+溶剂化结构。这种溶剂化的Li+可以插入到大间距的碳层中,从而提高了容量。因此,当放电至1.0 V时,CF1.12阴极的比容量为1944 mA h g-1,比能量密度为3793 W h kg-1。这一策略表明,设计电解质对提高CFx阴极的电化学性能是强有力的。
Lithium-ion and solvent co-intercalation enhancing the energy density of fluorinated graphene cathode
Fluorinated carbons CFx hold the highest theoretical energy density (e.g., 2180 W h kg−1 when x = 1) among all cathode materials of lithium primary batteries. However, the low conductivity and severe polarization limit it to achieve its theory. In this study, we design a new electrolyte, namely 1 M LiBF4 DMSO:DOL (1:9 vol.), achieving a high energy density in Li/CFx primary cells. The DMSO with a small molecular size and high donor number successfully solvates Li+ into a defined Li+-solvation structure. Such solvated Li+ can intercalate into the large-spacing carbon layers and achieve an improved capacity. Consequently, when discharged to 1.0 V, the CF1.12 cathode demonstrates a specific capacity of 1944 mA h g−1 with a specific energy density of 3793 W h kg−1. This strategy demonstrates that designing the electrolyte is powerful in improving the electrochemical performance of CFx cathode.