使用宏观和微观数据的异构代理模型的全信息估计

IF 1.9 3区 经济学 Q2 ECONOMICS
Laura Liu, Mikkel Plagborg-Moller
{"title":"使用宏观和微观数据的异构代理模型的全信息估计","authors":"Laura Liu, Mikkel Plagborg-Moller","doi":"10.3982/qe1810","DOIUrl":null,"url":null,"abstract":"We develop a generally applicable full‐information inference method for heterogeneous agent models, combining aggregate time series data and repeated cross‐sections of micro data. To handle unobserved aggregate state variables that affect cross‐sectional distributions, we compute a numerically unbiased estimate of the model‐implied likelihood function. Employing the likelihood estimate in a Markov Chain Monte Carlo algorithm, we obtain fully efficient and valid Bayesian inference. Evaluation of the micro part of the likelihood lends itself naturally to parallel computing. Numerical illustrations in models with heterogeneous households or firms demonstrate that the proposed full‐information method substantially sharpens inference relative to using only macro data, and for some parameters micro data is essential for identification.","PeriodicalId":46811,"journal":{"name":"Quantitative Economics","volume":"36 1","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Full‐information estimation of heterogeneous agent models using macro and micro data\",\"authors\":\"Laura Liu, Mikkel Plagborg-Moller\",\"doi\":\"10.3982/qe1810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop a generally applicable full‐information inference method for heterogeneous agent models, combining aggregate time series data and repeated cross‐sections of micro data. To handle unobserved aggregate state variables that affect cross‐sectional distributions, we compute a numerically unbiased estimate of the model‐implied likelihood function. Employing the likelihood estimate in a Markov Chain Monte Carlo algorithm, we obtain fully efficient and valid Bayesian inference. Evaluation of the micro part of the likelihood lends itself naturally to parallel computing. Numerical illustrations in models with heterogeneous households or firms demonstrate that the proposed full‐information method substantially sharpens inference relative to using only macro data, and for some parameters micro data is essential for identification.\",\"PeriodicalId\":46811,\"journal\":{\"name\":\"Quantitative Economics\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantitative Economics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3982/qe1810\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantitative Economics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3982/qe1810","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 3

摘要

我们开发了一种普遍适用于异构智能体模型的全信息推理方法,将聚合时间序列数据和重复的微观数据截面相结合。为了处理影响横截面分布的未观察到的总体状态变量,我们计算了模型隐含似然函数的数值无偏估计。利用马尔可夫链蒙特卡罗算法的似然估计,得到了完全有效的贝叶斯推理。对可能性的微观部分的评估自然适合并行计算。在异构家庭或企业模型中的数值实例表明,与仅使用宏观数据相比,所提出的全信息方法大大提高了推理的锐化程度,对于某些参数,微观数据对于识别至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Full‐information estimation of heterogeneous agent models using macro and micro data
We develop a generally applicable full‐information inference method for heterogeneous agent models, combining aggregate time series data and repeated cross‐sections of micro data. To handle unobserved aggregate state variables that affect cross‐sectional distributions, we compute a numerically unbiased estimate of the model‐implied likelihood function. Employing the likelihood estimate in a Markov Chain Monte Carlo algorithm, we obtain fully efficient and valid Bayesian inference. Evaluation of the micro part of the likelihood lends itself naturally to parallel computing. Numerical illustrations in models with heterogeneous households or firms demonstrate that the proposed full‐information method substantially sharpens inference relative to using only macro data, and for some parameters micro data is essential for identification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
5.60%
发文量
28
审稿时长
52 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信