线性弹性中自由不连续问题的收敛性:均匀化和松弛

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Manuel Friedrich, Matteo Perugini, Francesco Solombrino
{"title":"线性弹性中自由不连续问题的收敛性:均匀化和松弛","authors":"Manuel Friedrich, Matteo Perugini, Francesco Solombrino","doi":"10.1512/iumj.2023.72.9499","DOIUrl":null,"url":null,"abstract":"We analyze the $\\Gamma$-convergence of sequences of free-discontinuity functionals arising in the modeling of linear elastic solids with surface discontinuities, including phenomena as fracture, damage, or material voids. We prove compactness with respect to $\\Gamma$-convergence and represent the $\\Gamma$-limit in an integral form defined on the space of generalized special functions of bounded deformation ($GSBD^p$). We identify the integrands in terms of asymptotic cell formulas and prove a non-interaction property between bulk and surface contributions. Eventually, we investigate sequences of corresponding boundary value problems and show convergence of minimum values and minimizers. In particular, our techniques allow to characterize relaxations of functionals on $GSBD^p$, and cover the classical case of periodic homogenization.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"\\\\Gamma-convergence for free-discontinuity problems in linear elasticity: homogenization and relaxation\",\"authors\":\"Manuel Friedrich, Matteo Perugini, Francesco Solombrino\",\"doi\":\"10.1512/iumj.2023.72.9499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We analyze the $\\\\Gamma$-convergence of sequences of free-discontinuity functionals arising in the modeling of linear elastic solids with surface discontinuities, including phenomena as fracture, damage, or material voids. We prove compactness with respect to $\\\\Gamma$-convergence and represent the $\\\\Gamma$-limit in an integral form defined on the space of generalized special functions of bounded deformation ($GSBD^p$). We identify the integrands in terms of asymptotic cell formulas and prove a non-interaction property between bulk and surface contributions. Eventually, we investigate sequences of corresponding boundary value problems and show convergence of minimum values and minimizers. In particular, our techniques allow to characterize relaxations of functionals on $GSBD^p$, and cover the classical case of periodic homogenization.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1512/iumj.2023.72.9499\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1512/iumj.2023.72.9499","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

摘要

我们分析了在具有表面不连续的线弹性固体(包括断裂、损伤或材料空洞等现象)建模中出现的自由不连续泛函序列的$\Gamma$收敛性。我们证明了关于$\Gamma$-收敛的紧性,并将$\Gamma$-极限表示为定义在有界变形广义特殊函数($GSBD^p$)空间上的积分形式。我们根据渐近单元公式确定了积分,并证明了体积和表面贡献之间的非相互作用性质。最后,我们研究了相应边值问题的序列,并证明了最小值和最小值的收敛性。特别是,我们的技术允许表征泛函在$GSBD^p$上的松弛,并涵盖了周期均匀化的经典情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
\Gamma-convergence for free-discontinuity problems in linear elasticity: homogenization and relaxation
We analyze the $\Gamma$-convergence of sequences of free-discontinuity functionals arising in the modeling of linear elastic solids with surface discontinuities, including phenomena as fracture, damage, or material voids. We prove compactness with respect to $\Gamma$-convergence and represent the $\Gamma$-limit in an integral form defined on the space of generalized special functions of bounded deformation ($GSBD^p$). We identify the integrands in terms of asymptotic cell formulas and prove a non-interaction property between bulk and surface contributions. Eventually, we investigate sequences of corresponding boundary value problems and show convergence of minimum values and minimizers. In particular, our techniques allow to characterize relaxations of functionals on $GSBD^p$, and cover the classical case of periodic homogenization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信