{"title":"平均曲率型流集论解的回避","authors":"Or Hershkovits, Brian White","doi":"10.4310/cag.2023.v31.n1.a2","DOIUrl":null,"url":null,"abstract":"We provide a self-contained treatment of set-theoretic subsolutions to flow by mean curvature, or, more generally, to flow by mean curvature plus an ambient vector field. The ambient space can be any smooth Riemannian manifold. Most importantly, we show that if two such set-theoretic subsolutions are initially disjoint, then they remain disjoint as long as one of the subsolutions is compact; previously, this was only known for Euclidean space (with no ambient vectorfield). The new version (March 2020) incorporates improvements suggested by the CAG referee.","PeriodicalId":50662,"journal":{"name":"Communications in Analysis and Geometry","volume":"8 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Avoidance for set-theoretic solutions of mean-curvature-type flows\",\"authors\":\"Or Hershkovits, Brian White\",\"doi\":\"10.4310/cag.2023.v31.n1.a2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We provide a self-contained treatment of set-theoretic subsolutions to flow by mean curvature, or, more generally, to flow by mean curvature plus an ambient vector field. The ambient space can be any smooth Riemannian manifold. Most importantly, we show that if two such set-theoretic subsolutions are initially disjoint, then they remain disjoint as long as one of the subsolutions is compact; previously, this was only known for Euclidean space (with no ambient vectorfield). The new version (March 2020) incorporates improvements suggested by the CAG referee.\",\"PeriodicalId\":50662,\"journal\":{\"name\":\"Communications in Analysis and Geometry\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Analysis and Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/cag.2023.v31.n1.a2\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Analysis and Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/cag.2023.v31.n1.a2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Avoidance for set-theoretic solutions of mean-curvature-type flows
We provide a self-contained treatment of set-theoretic subsolutions to flow by mean curvature, or, more generally, to flow by mean curvature plus an ambient vector field. The ambient space can be any smooth Riemannian manifold. Most importantly, we show that if two such set-theoretic subsolutions are initially disjoint, then they remain disjoint as long as one of the subsolutions is compact; previously, this was only known for Euclidean space (with no ambient vectorfield). The new version (March 2020) incorporates improvements suggested by the CAG referee.
期刊介绍:
Publishes high-quality papers on subjects related to classical analysis, partial differential equations, algebraic geometry, differential geometry, and topology.