基于学习环面pca的多尺度RNA校正分类及其在SARS-CoV-2中的应用

IF 1 4区 数学 Q3 STATISTICS & PROBABILITY
Henrik Wiechers, Benjamin Eltzner, Kanti V Mardia, Stephan F Huckemann
{"title":"基于学习环面pca的多尺度RNA校正分类及其在SARS-CoV-2中的应用","authors":"Henrik Wiechers, Benjamin Eltzner, Kanti V Mardia, Stephan F Huckemann","doi":"10.1093/jrsssc/qlad004","DOIUrl":null,"url":null,"abstract":"Abstract Three-dimensional RNA structures frequently contain atomic clashes. Usually, corrections approximate the biophysical chemistry, which is computationally intensive and often does not correct all clashes. We propose fast, data-driven reconstructions from clash-free benchmark data with two-scale shape analysis: microscopic (suites) dihedral backbone angles, mesoscopic sugar ring centre landmarks. Our analysis relates concentrated mesoscopic scale neighbourhoods to microscopic scale clusters, correcting within-suite-backbone-to-backbone clashes exploiting angular shape and size-and-shape Fréchet means. Validation shows that learned classes highly correspond with literature clusters and reconstructions are well within physical resolution. We illustrate the power of our method using cutting-edge SARS-CoV-2 RNA.","PeriodicalId":49981,"journal":{"name":"Journal of the Royal Statistical Society Series C-Applied Statistics","volume":"54 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning torus PCA-based classification for multiscale RNA correction with application to SARS-CoV-2\",\"authors\":\"Henrik Wiechers, Benjamin Eltzner, Kanti V Mardia, Stephan F Huckemann\",\"doi\":\"10.1093/jrsssc/qlad004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Three-dimensional RNA structures frequently contain atomic clashes. Usually, corrections approximate the biophysical chemistry, which is computationally intensive and often does not correct all clashes. We propose fast, data-driven reconstructions from clash-free benchmark data with two-scale shape analysis: microscopic (suites) dihedral backbone angles, mesoscopic sugar ring centre landmarks. Our analysis relates concentrated mesoscopic scale neighbourhoods to microscopic scale clusters, correcting within-suite-backbone-to-backbone clashes exploiting angular shape and size-and-shape Fréchet means. Validation shows that learned classes highly correspond with literature clusters and reconstructions are well within physical resolution. We illustrate the power of our method using cutting-edge SARS-CoV-2 RNA.\",\"PeriodicalId\":49981,\"journal\":{\"name\":\"Journal of the Royal Statistical Society Series C-Applied Statistics\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Royal Statistical Society Series C-Applied Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/jrsssc/qlad004\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Royal Statistical Society Series C-Applied Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jrsssc/qlad004","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

三维RNA结构经常包含原子冲突。通常,校正近似于生物物理化学,这是计算密集的,往往不能纠正所有的冲突。我们提出了快速的,数据驱动的重建从无碰撞的基准数据与双尺度形状分析:微观(套)二面体主干角,介观糖环中心地标。我们的分析将集中的介观尺度邻域与微观尺度集群联系起来,利用角形状和大小形状的fracima方法在套件内校正骨干到骨干的冲突。验证表明,学习到的类与文献簇高度对应,重构在物理分辨率范围内。我们使用尖端的SARS-CoV-2 RNA来说明我们的方法的力量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning torus PCA-based classification for multiscale RNA correction with application to SARS-CoV-2
Abstract Three-dimensional RNA structures frequently contain atomic clashes. Usually, corrections approximate the biophysical chemistry, which is computationally intensive and often does not correct all clashes. We propose fast, data-driven reconstructions from clash-free benchmark data with two-scale shape analysis: microscopic (suites) dihedral backbone angles, mesoscopic sugar ring centre landmarks. Our analysis relates concentrated mesoscopic scale neighbourhoods to microscopic scale clusters, correcting within-suite-backbone-to-backbone clashes exploiting angular shape and size-and-shape Fréchet means. Validation shows that learned classes highly correspond with literature clusters and reconstructions are well within physical resolution. We illustrate the power of our method using cutting-edge SARS-CoV-2 RNA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
76
审稿时长
>12 weeks
期刊介绍: The Journal of the Royal Statistical Society, Series C (Applied Statistics) is a journal of international repute for statisticians both inside and outside the academic world. The journal is concerned with papers which deal with novel solutions to real life statistical problems by adapting or developing methodology, or by demonstrating the proper application of new or existing statistical methods to them. At their heart therefore the papers in the journal are motivated by examples and statistical data of all kinds. The subject-matter covers the whole range of inter-disciplinary fields, e.g. applications in agriculture, genetics, industry, medicine and the physical sciences, and papers on design issues (e.g. in relation to experiments, surveys or observational studies). A deep understanding of statistical methodology is not necessary to appreciate the content. Although papers describing developments in statistical computing driven by practical examples are within its scope, the journal is not concerned with simply numerical illustrations or simulation studies. The emphasis of Series C is on case-studies of statistical analyses in practice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信