热噪声下薄膜方程的热力学一致性和保正离散化

IF 2.2 2区 数学 Q1 MATHEMATICS, APPLIED
Benjamin Gess, Rishabh S. Gvalani, Florian Kunick, Felix Otto
{"title":"热噪声下薄膜方程的热力学一致性和保正离散化","authors":"Benjamin Gess, Rishabh S. Gvalani, Florian Kunick, Felix Otto","doi":"10.1090/mcom/3830","DOIUrl":null,"url":null,"abstract":"In micro-fluidics, both capillarity and thermal fluctuations play an important role. On the level of the lubrication approximation, this leads to a quasi-linear fourth-order parabolic equation for the film height <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"h\"> <mml:semantics> <mml:mi>h</mml:mi> <mml:annotation encoding=\"application/x-tex\">h</mml:annotation> </mml:semantics> </mml:math> </inline-formula> driven by space-time white noise. The (formal) gradient flow structure of its deterministic counterpart, the so-called thin-film equation, which encodes the balance between driving capillary and limiting viscous forces, provides the guidance for the thermodynamically consistent introduction of fluctuations. We follow this route on the level of a spatial discretization of the gradient flow structure, i.e., on the level of a discretization of energy functional and dissipative metric tensor. Starting from an energetically conformal finite-element (FE) discretization, we point out that the numerical mobility function introduced by Grün and Rumpf can be interpreted as a discretization of the metric tensor in the sense of a mixed FE method with lumping. While this discretization was devised in order to preserve the so-called entropy estimate, we use this to show that the resulting high-dimensional stochastic differential equation (SDE) preserves pathwise and pointwise strict positivity, at least in case of the physically relevant mobility function arising from the no-slip boundary condition. As a consequence, and as opposed to previous discretizations of the thin-film equation with thermal noise, the above discretization is not in need of an artificial condition at the boundary of the configuration space orthant <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-brace h greater-than 0 right-brace\"> <mml:semantics> <mml:mrow> <mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo> <mml:mi>h</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>0</mml:mn> <mml:mo fence=\"false\" stretchy=\"false\">}</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\{h&gt;0\\}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> (which, admittedly, could also be avoided by modelling a disjoining pressure). Thus, this discretization gives rise to a consistent invariant measure, namely a discretization of the Brownian excursion (up to the volume constraint), and thus features an entropic repulsion. The price to pay over more direct discretizations is that when writing the SDE in Itô’s form, which is the basis for the Euler-Mayurama time discretization, a correction term appears. We perform various numerical experiments to compare the behavior and performance of our discretization to that of a particular finite difference discretization of the equation. Among other things, we study numerically the invariance and entropic repulsion of the invariant measure and provide evidence for the fact that the finite difference discretization touches down almost surely while our discretization stays away from the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"partial-differential left-brace h greater-than 0 right-brace\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"normal\">∂<!-- ∂ --></mml:mi> <mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo> <mml:mi>h</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>0</mml:mn> <mml:mo fence=\"false\" stretchy=\"false\">}</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\partial \\{h &gt; 0\\}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":"68 1","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermodynamically consistent and positivity-preserving discretization of the thin-film equation with thermal noise\",\"authors\":\"Benjamin Gess, Rishabh S. Gvalani, Florian Kunick, Felix Otto\",\"doi\":\"10.1090/mcom/3830\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In micro-fluidics, both capillarity and thermal fluctuations play an important role. On the level of the lubrication approximation, this leads to a quasi-linear fourth-order parabolic equation for the film height <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"h\\\"> <mml:semantics> <mml:mi>h</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">h</mml:annotation> </mml:semantics> </mml:math> </inline-formula> driven by space-time white noise. The (formal) gradient flow structure of its deterministic counterpart, the so-called thin-film equation, which encodes the balance between driving capillary and limiting viscous forces, provides the guidance for the thermodynamically consistent introduction of fluctuations. We follow this route on the level of a spatial discretization of the gradient flow structure, i.e., on the level of a discretization of energy functional and dissipative metric tensor. Starting from an energetically conformal finite-element (FE) discretization, we point out that the numerical mobility function introduced by Grün and Rumpf can be interpreted as a discretization of the metric tensor in the sense of a mixed FE method with lumping. While this discretization was devised in order to preserve the so-called entropy estimate, we use this to show that the resulting high-dimensional stochastic differential equation (SDE) preserves pathwise and pointwise strict positivity, at least in case of the physically relevant mobility function arising from the no-slip boundary condition. As a consequence, and as opposed to previous discretizations of the thin-film equation with thermal noise, the above discretization is not in need of an artificial condition at the boundary of the configuration space orthant <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-brace h greater-than 0 right-brace\\\"> <mml:semantics> <mml:mrow> <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">{</mml:mo> <mml:mi>h</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>0</mml:mn> <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">}</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\{h&gt;0\\\\}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> (which, admittedly, could also be avoided by modelling a disjoining pressure). Thus, this discretization gives rise to a consistent invariant measure, namely a discretization of the Brownian excursion (up to the volume constraint), and thus features an entropic repulsion. The price to pay over more direct discretizations is that when writing the SDE in Itô’s form, which is the basis for the Euler-Mayurama time discretization, a correction term appears. We perform various numerical experiments to compare the behavior and performance of our discretization to that of a particular finite difference discretization of the equation. Among other things, we study numerically the invariance and entropic repulsion of the invariant measure and provide evidence for the fact that the finite difference discretization touches down almost surely while our discretization stays away from the <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"partial-differential left-brace h greater-than 0 right-brace\\\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\\\"normal\\\">∂<!-- ∂ --></mml:mi> <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">{</mml:mo> <mml:mi>h</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>0</mml:mn> <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">}</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\partial \\\\{h &gt; 0\\\\}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.\",\"PeriodicalId\":18456,\"journal\":{\"name\":\"Mathematics of Computation\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics of Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/mcom/3830\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3830","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在微流体中,毛细作用和热波动都起着重要的作用。在润滑近似的水平上,得到了时空白噪声驱动下膜高度h h的拟线性四阶抛物方程。其确定性对应的(正式的)梯度流动结构,即所谓的薄膜方程,编码了驱动毛细管力和限制粘性力之间的平衡,为波动的热力学一致性引入提供了指导。我们在梯度流结构的空间离散化水平上遵循这条路线,即在能量泛函和耗散度量张量的离散化水平上。从能量共形有限元(FE)离散出发,指出gr n和Rumpf引入的数值迁移率函数可以解释为带有集总的混合有限元方法意义上度量张量的离散化。虽然这种离散化是为了保持所谓的熵估计而设计的,但我们用它来表明,所得到的高维随机微分方程(SDE)至少在无滑移边界条件产生的物理相关迁移函数的情况下,保持了路径和点的严格正性。因此,与之前对热噪声薄膜方程的离散化相反,上述离散化不需要在构形空间正交{h >0} \{h>0\}(诚然,这也可以通过模拟分离压力来避免)。因此,这种离散化产生了一个一致的不变测度,即布朗偏移的离散化(直到体积约束),从而具有熵排斥。与更直接的离散化相比,付出的代价是,当将SDE写成Itô的形式(这是欧拉- mayurama时间离散化的基础)时,会出现一个校正项。我们进行了各种数值实验来比较我们的离散化与方程的特定有限差分离散化的行为和性能。除其他事项外,我们在数值上研究了不变测度的不变性和熵排斥,并为以下事实提供了证据:当我们的离散化远离∂{h >0} \partial \{h >0 \}。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermodynamically consistent and positivity-preserving discretization of the thin-film equation with thermal noise
In micro-fluidics, both capillarity and thermal fluctuations play an important role. On the level of the lubrication approximation, this leads to a quasi-linear fourth-order parabolic equation for the film height h h driven by space-time white noise. The (formal) gradient flow structure of its deterministic counterpart, the so-called thin-film equation, which encodes the balance between driving capillary and limiting viscous forces, provides the guidance for the thermodynamically consistent introduction of fluctuations. We follow this route on the level of a spatial discretization of the gradient flow structure, i.e., on the level of a discretization of energy functional and dissipative metric tensor. Starting from an energetically conformal finite-element (FE) discretization, we point out that the numerical mobility function introduced by Grün and Rumpf can be interpreted as a discretization of the metric tensor in the sense of a mixed FE method with lumping. While this discretization was devised in order to preserve the so-called entropy estimate, we use this to show that the resulting high-dimensional stochastic differential equation (SDE) preserves pathwise and pointwise strict positivity, at least in case of the physically relevant mobility function arising from the no-slip boundary condition. As a consequence, and as opposed to previous discretizations of the thin-film equation with thermal noise, the above discretization is not in need of an artificial condition at the boundary of the configuration space orthant { h > 0 } \{h>0\} (which, admittedly, could also be avoided by modelling a disjoining pressure). Thus, this discretization gives rise to a consistent invariant measure, namely a discretization of the Brownian excursion (up to the volume constraint), and thus features an entropic repulsion. The price to pay over more direct discretizations is that when writing the SDE in Itô’s form, which is the basis for the Euler-Mayurama time discretization, a correction term appears. We perform various numerical experiments to compare the behavior and performance of our discretization to that of a particular finite difference discretization of the equation. Among other things, we study numerically the invariance and entropic repulsion of the invariant measure and provide evidence for the fact that the finite difference discretization touches down almost surely while our discretization stays away from the { h > 0 } \partial \{h > 0\} .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematics of Computation
Mathematics of Computation 数学-应用数学
CiteScore
3.90
自引率
5.00%
发文量
55
审稿时长
7.0 months
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles of the highest quality in computational mathematics. Areas covered include numerical analysis, computational discrete mathematics, including number theory, algebra and combinatorics, and related fields such as stochastic numerical methods. Articles must be of significant computational interest and contain original and substantial mathematical analysis or development of computational methodology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信