随机Lie-Poisson系统的分裂积分器

IF 2.2 2区 数学 Q1 MATHEMATICS, APPLIED
Charles-Edouard Bréhier, David Cohen, Tobias Jahnke
{"title":"随机Lie-Poisson系统的分裂积分器","authors":"Charles-Edouard Bréhier, David Cohen, Tobias Jahnke","doi":"10.1090/mcom/3829","DOIUrl":null,"url":null,"abstract":"We study stochastic Poisson integrators for a class of stochastic Poisson systems driven by Stratonovich noise. Such geometric integrators preserve Casimir functions and the Poisson map property. For this purpose, we propose explicit stochastic Poisson integrators based on a splitting strategy, and analyse their qualitative and quantitative properties: preservation of Casimir functions, existence of almost sure or moment bounds, asymptotic preserving property, and strong and weak rates of convergence. The construction of the schemes and the theoretical results are illustrated through extensive numerical experiments for three examples of stochastic Lie–Poisson systems, namely: stochastically perturbed Maxwell–Bloch, rigid body and sine–Euler equations.","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":"1 1","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Splitting integrators for stochastic Lie–Poisson systems\",\"authors\":\"Charles-Edouard Bréhier, David Cohen, Tobias Jahnke\",\"doi\":\"10.1090/mcom/3829\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study stochastic Poisson integrators for a class of stochastic Poisson systems driven by Stratonovich noise. Such geometric integrators preserve Casimir functions and the Poisson map property. For this purpose, we propose explicit stochastic Poisson integrators based on a splitting strategy, and analyse their qualitative and quantitative properties: preservation of Casimir functions, existence of almost sure or moment bounds, asymptotic preserving property, and strong and weak rates of convergence. The construction of the schemes and the theoretical results are illustrated through extensive numerical experiments for three examples of stochastic Lie–Poisson systems, namely: stochastically perturbed Maxwell–Bloch, rigid body and sine–Euler equations.\",\"PeriodicalId\":18456,\"journal\":{\"name\":\"Mathematics of Computation\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics of Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/mcom/3829\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3829","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

研究了一类由Stratonovich噪声驱动的随机泊松系统的随机泊松积分器。这样的几何积分器保留了卡西米尔函数和泊松映射的性质。为此,我们提出了一种基于分裂策略的显式随机泊松积分器,并分析了它们的定性和定量性质:卡西米尔函数的保持性、几乎确定或矩界的存在性、渐近保持性、强收敛率和弱收敛率。通过对随机扰动麦克斯韦-布洛赫方程、刚体方程和正弦-欧拉方程三种随机李泊松系统的大量数值实验,说明了格式的构造和理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Splitting integrators for stochastic Lie–Poisson systems
We study stochastic Poisson integrators for a class of stochastic Poisson systems driven by Stratonovich noise. Such geometric integrators preserve Casimir functions and the Poisson map property. For this purpose, we propose explicit stochastic Poisson integrators based on a splitting strategy, and analyse their qualitative and quantitative properties: preservation of Casimir functions, existence of almost sure or moment bounds, asymptotic preserving property, and strong and weak rates of convergence. The construction of the schemes and the theoretical results are illustrated through extensive numerical experiments for three examples of stochastic Lie–Poisson systems, namely: stochastically perturbed Maxwell–Bloch, rigid body and sine–Euler equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematics of Computation
Mathematics of Computation 数学-应用数学
CiteScore
3.90
自引率
5.00%
发文量
55
审稿时长
7.0 months
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles of the highest quality in computational mathematics. Areas covered include numerical analysis, computational discrete mathematics, including number theory, algebra and combinatorics, and related fields such as stochastic numerical methods. Articles must be of significant computational interest and contain original and substantial mathematical analysis or development of computational methodology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信