优化了时变Stokes-Darcy耦合的Schwarz方法

IF 2.3 2区 数学 Q1 MATHEMATICS, APPLIED
Marco Discacciati, Tommaso Vanzan
{"title":"优化了时变Stokes-Darcy耦合的Schwarz方法","authors":"Marco Discacciati, Tommaso Vanzan","doi":"10.1093/imanum/drad057","DOIUrl":null,"url":null,"abstract":"Abstract This paper derives optimized coefficients for optimized Schwarz iterations for the time-dependent Stokes–Darcy problem using an innovative strategy to solve a nonstandard min-max problem. The coefficients take into account both physical and discretization parameters that characterize the coupled problem, and they guarantee the robustness of the associated domain decomposition method. Numerical results validate the proposed approach in several test cases with physically relevant parameters.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimized Schwarz methods for the time-dependent Stokes–Darcy coupling\",\"authors\":\"Marco Discacciati, Tommaso Vanzan\",\"doi\":\"10.1093/imanum/drad057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper derives optimized coefficients for optimized Schwarz iterations for the time-dependent Stokes–Darcy problem using an innovative strategy to solve a nonstandard min-max problem. The coefficients take into account both physical and discretization parameters that characterize the coupled problem, and they guarantee the robustness of the associated domain decomposition method. Numerical results validate the proposed approach in several test cases with physically relevant parameters.\",\"PeriodicalId\":56295,\"journal\":{\"name\":\"IMA Journal of Numerical Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IMA Journal of Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/imanum/drad057\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/imanum/drad057","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文利用一种创新的策略求解非标准最小-最大问题,导出了时变Stokes-Darcy问题的最优Schwarz迭代的最优系数。该系数考虑了表征耦合问题的物理参数和离散参数,保证了相关区域分解方法的鲁棒性。数值结果验证了几种具有物理相关参数的测试用例的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimized Schwarz methods for the time-dependent Stokes–Darcy coupling
Abstract This paper derives optimized coefficients for optimized Schwarz iterations for the time-dependent Stokes–Darcy problem using an innovative strategy to solve a nonstandard min-max problem. The coefficients take into account both physical and discretization parameters that characterize the coupled problem, and they guarantee the robustness of the associated domain decomposition method. Numerical results validate the proposed approach in several test cases with physically relevant parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信