Lainey V. Bristow, Ralph Grundel, Jason D. K. Dzurisin, Grace C. Wu, Yudi Li, Andrew Hildreth, Jessica J. Hellmann
{"title":"变暖实验测试了一种濒危蝴蝶在整个生命历史阶段的温度敏感性","authors":"Lainey V. Bristow, Ralph Grundel, Jason D. K. Dzurisin, Grace C. Wu, Yudi Li, Andrew Hildreth, Jessica J. Hellmann","doi":"10.1007/s10841-023-00518-3","DOIUrl":null,"url":null,"abstract":"Abstract The Karner blue butterfly (Lycaeides melissa samuelis) (hereafter Karner blue) is a federally listed endangered species occurring in disjunct locations within the Midwest and Eastern United States. As a hostplant specialist and an ectotherm, the Karner blue is likely to be susceptible to effects of climate change. We undertook warming experiments to explore the temperature sensitivity of various Karner blue life history stages and traits. Over a two-year period, we exposed all Karner blue life stages to temperature increases of + 2, + 4, and + 6 °C above 1952–1999 mean temperatures. We analyzed the effect of these treatments on life history parameters likely related to fitness and population size, including development time, voltinism, degree-day accumulation, body weight, and morphology. Warming treatments resulted in earlier emergence and accelerated development, leading to additional generations. Warming also increased the number of degree-days accumulated during pre-adult development (i.e., egg hatch to eclosion). Results suggest that Karner blues developed in fewer days, in part, by putting on less mass as temperatures increased. As treatment temperature increased, adult body mass, length, and area decreased and voltinism increased. Females with lower adult mass and smaller body size produced fewer eggs. These results suggest a trade-off between accelerated development and decreased body size with decrease in adult mass and abdominal area being associated with reduced fecundity. Implications for insect conservation Changes in development timing and in voltinism can negatively affect phenological matching between the Karner blue and its obligate host plant, Wild lupine (Lupinus perennis), resulting in population decrease. Poorer phenological matching between insect and hostplant can occur across multiple generations, for example, negatively affecting overwintering population size. With increasing temperatures, smaller females will produce fewer eggs, which can also lead to poorer population outcomes across generations.","PeriodicalId":16240,"journal":{"name":"Journal of Insect Conservation","volume":"225 1","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Warming experiments test the temperature sensitivity of an endangered butterfly across life history stages\",\"authors\":\"Lainey V. Bristow, Ralph Grundel, Jason D. K. Dzurisin, Grace C. Wu, Yudi Li, Andrew Hildreth, Jessica J. Hellmann\",\"doi\":\"10.1007/s10841-023-00518-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The Karner blue butterfly (Lycaeides melissa samuelis) (hereafter Karner blue) is a federally listed endangered species occurring in disjunct locations within the Midwest and Eastern United States. As a hostplant specialist and an ectotherm, the Karner blue is likely to be susceptible to effects of climate change. We undertook warming experiments to explore the temperature sensitivity of various Karner blue life history stages and traits. Over a two-year period, we exposed all Karner blue life stages to temperature increases of + 2, + 4, and + 6 °C above 1952–1999 mean temperatures. We analyzed the effect of these treatments on life history parameters likely related to fitness and population size, including development time, voltinism, degree-day accumulation, body weight, and morphology. Warming treatments resulted in earlier emergence and accelerated development, leading to additional generations. Warming also increased the number of degree-days accumulated during pre-adult development (i.e., egg hatch to eclosion). Results suggest that Karner blues developed in fewer days, in part, by putting on less mass as temperatures increased. As treatment temperature increased, adult body mass, length, and area decreased and voltinism increased. Females with lower adult mass and smaller body size produced fewer eggs. These results suggest a trade-off between accelerated development and decreased body size with decrease in adult mass and abdominal area being associated with reduced fecundity. Implications for insect conservation Changes in development timing and in voltinism can negatively affect phenological matching between the Karner blue and its obligate host plant, Wild lupine (Lupinus perennis), resulting in population decrease. Poorer phenological matching between insect and hostplant can occur across multiple generations, for example, negatively affecting overwintering population size. With increasing temperatures, smaller females will produce fewer eggs, which can also lead to poorer population outcomes across generations.\",\"PeriodicalId\":16240,\"journal\":{\"name\":\"Journal of Insect Conservation\",\"volume\":\"225 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Insect Conservation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10841-023-00518-3\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Insect Conservation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10841-023-00518-3","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
Warming experiments test the temperature sensitivity of an endangered butterfly across life history stages
Abstract The Karner blue butterfly (Lycaeides melissa samuelis) (hereafter Karner blue) is a federally listed endangered species occurring in disjunct locations within the Midwest and Eastern United States. As a hostplant specialist and an ectotherm, the Karner blue is likely to be susceptible to effects of climate change. We undertook warming experiments to explore the temperature sensitivity of various Karner blue life history stages and traits. Over a two-year period, we exposed all Karner blue life stages to temperature increases of + 2, + 4, and + 6 °C above 1952–1999 mean temperatures. We analyzed the effect of these treatments on life history parameters likely related to fitness and population size, including development time, voltinism, degree-day accumulation, body weight, and morphology. Warming treatments resulted in earlier emergence and accelerated development, leading to additional generations. Warming also increased the number of degree-days accumulated during pre-adult development (i.e., egg hatch to eclosion). Results suggest that Karner blues developed in fewer days, in part, by putting on less mass as temperatures increased. As treatment temperature increased, adult body mass, length, and area decreased and voltinism increased. Females with lower adult mass and smaller body size produced fewer eggs. These results suggest a trade-off between accelerated development and decreased body size with decrease in adult mass and abdominal area being associated with reduced fecundity. Implications for insect conservation Changes in development timing and in voltinism can negatively affect phenological matching between the Karner blue and its obligate host plant, Wild lupine (Lupinus perennis), resulting in population decrease. Poorer phenological matching between insect and hostplant can occur across multiple generations, for example, negatively affecting overwintering population size. With increasing temperatures, smaller females will produce fewer eggs, which can also lead to poorer population outcomes across generations.
期刊介绍:
The Journal of Insect Conservation is an international journal devoted to the publication of articles concerned with the conservation of insects and related invertebrates. The Journal of Insect Conservation publishes papers on all aspects of conservation and biodiversity related to the insects and closely related groups such as Arachnids and Myriapods, including ecological work which has conservation implications. Research papers may address the subject at the community, population or species level, may cover aspects of behaviour, taxonomy or genetics, be theoretical or practical, and be local or global in nature. Review articles are welcome as well as points of view which are likely to stimulate debate. From time to time the journal will publish Special Issues on specific subject areas which are the focus of current research. Proposals for such issues are welcome.