{"title":"临界和超临界生长Schrödinger-Poisson系统的多个正解","authors":"Jun Lei, Hong-Min Suo","doi":"10.4213/im9244e","DOIUrl":null,"url":null,"abstract":"In this paper, we are concerned with the following Schrödinger-Poisson system $$ \\begin{cases} -\\Delta u+u+\\lambda\\phi u= Q(x)|u|^{4}u+\\mu \\dfrac{|x|^\\beta}{1+|x|^\\beta}|u|^{q-2}u&amp;in \\mathbb{R}^3, -\\Delta \\phi=u^{2} &amp;in \\mathbb{R}^3, \\end{cases} $$ where $0< \\beta<3$, $6<q<6+2\\beta$, $Q(x)$ is a positive continuous function on $\\mathbb{R}^3$, $\\lambda,\\mu>0$ are real parameters. By the variational method and the Nehari method, we obtain that the system has $k$ positive solutions.","PeriodicalId":54910,"journal":{"name":"Izvestiya Mathematics","volume":"141 1","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple positive solutions for a Schrödinger-Poisson system with critical and supercritical growths\",\"authors\":\"Jun Lei, Hong-Min Suo\",\"doi\":\"10.4213/im9244e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we are concerned with the following Schrödinger-Poisson system $$ \\\\begin{cases} -\\\\Delta u+u+\\\\lambda\\\\phi u= Q(x)|u|^{4}u+\\\\mu \\\\dfrac{|x|^\\\\beta}{1+|x|^\\\\beta}|u|^{q-2}u&amp;in \\\\mathbb{R}^3, -\\\\Delta \\\\phi=u^{2} &amp;in \\\\mathbb{R}^3, \\\\end{cases} $$ where $0< \\\\beta<3$, $6<q<6+2\\\\beta$, $Q(x)$ is a positive continuous function on $\\\\mathbb{R}^3$, $\\\\lambda,\\\\mu>0$ are real parameters. By the variational method and the Nehari method, we obtain that the system has $k$ positive solutions.\",\"PeriodicalId\":54910,\"journal\":{\"name\":\"Izvestiya Mathematics\",\"volume\":\"141 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4213/im9244e\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4213/im9244e","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Multiple positive solutions for a Schrödinger-Poisson system with critical and supercritical growths
In this paper, we are concerned with the following Schrödinger-Poisson system $$ \begin{cases} -\Delta u+u+\lambda\phi u= Q(x)|u|^{4}u+\mu \dfrac{|x|^\beta}{1+|x|^\beta}|u|^{q-2}u&in \mathbb{R}^3, -\Delta \phi=u^{2} &in \mathbb{R}^3, \end{cases} $$ where $0< \beta<3$, $60$ are real parameters. By the variational method and the Nehari method, we obtain that the system has $k$ positive solutions.
期刊介绍:
The Russian original is rigorously refereed in Russia and the translations are carefully scrutinised and edited by the London Mathematical Society. This publication covers all fields of mathematics, but special attention is given to:
Algebra;
Mathematical logic;
Number theory;
Mathematical analysis;
Geometry;
Topology;
Differential equations.