论迁移原理和涅斯捷连科的线性无关准则

IF 0.8 3区 数学 Q2 MATHEMATICS
Oleg Nikolaevich German, Nikolai Germanovich Moshchevitin
{"title":"论迁移原理和涅斯捷连科的线性无关准则","authors":"Oleg Nikolaevich German, Nikolai Germanovich Moshchevitin","doi":"10.4213/im9285e","DOIUrl":null,"url":null,"abstract":"We consider the problem of simultaneous approximation of real numbers $\\theta_1, …,\\theta_n$ by rationals and the dual problem of approximating zero by the values of the linear form $x_0+\\theta_1x_1+…+\\theta_nx_n$ at integer points. In this setting we analyse two transference inequalities obtained by Schmidt and Summerer. We present a rather simple geometric observation which proves their result. We also derive several previously unknown corollaries. In particular, we show that, together with German's inequalities for uniform exponents, Schmidt and Summerer's inequalities imply the inequalities by Bugeaud and Laurent and \"one half\" of the inequalities by Marnat and Moshchevitin. Moreover, we show that our main construction provides a rather simple proof of Nesterenko's linear independence criterion.","PeriodicalId":54910,"journal":{"name":"Izvestiya Mathematics","volume":"244 1","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the transference principle and Nesterenko's linear independence criterion\",\"authors\":\"Oleg Nikolaevich German, Nikolai Germanovich Moshchevitin\",\"doi\":\"10.4213/im9285e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of simultaneous approximation of real numbers $\\\\theta_1, …,\\\\theta_n$ by rationals and the dual problem of approximating zero by the values of the linear form $x_0+\\\\theta_1x_1+…+\\\\theta_nx_n$ at integer points. In this setting we analyse two transference inequalities obtained by Schmidt and Summerer. We present a rather simple geometric observation which proves their result. We also derive several previously unknown corollaries. In particular, we show that, together with German's inequalities for uniform exponents, Schmidt and Summerer's inequalities imply the inequalities by Bugeaud and Laurent and \\\"one half\\\" of the inequalities by Marnat and Moshchevitin. Moreover, we show that our main construction provides a rather simple proof of Nesterenko's linear independence criterion.\",\"PeriodicalId\":54910,\"journal\":{\"name\":\"Izvestiya Mathematics\",\"volume\":\"244 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4213/im9285e\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4213/im9285e","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了实数$\theta_1,…,\theta_n$用有理数同时逼近的问题,以及在整数点上用线性形式$x_0+\theta_1x_1+…+\theta_nx_n$逼近零的对偶问题。在此背景下,我们分析了Schmidt和Summerer得出的两个迁移不等式。我们提出一个相当简单的几何观察来证明他们的结果。我们还得出了几个以前未知的推论。特别是,我们表明,与德国的一致指数不等式一起,施密特和萨默斯的不等式暗示了Bugeaud和Laurent的不等式以及Marnat和Moshchevitin的“一半”不等式。此外,我们证明了我们的主要构造提供了一个相当简单的Nesterenko线性无关判据的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the transference principle and Nesterenko's linear independence criterion
We consider the problem of simultaneous approximation of real numbers $\theta_1, …,\theta_n$ by rationals and the dual problem of approximating zero by the values of the linear form $x_0+\theta_1x_1+…+\theta_nx_n$ at integer points. In this setting we analyse two transference inequalities obtained by Schmidt and Summerer. We present a rather simple geometric observation which proves their result. We also derive several previously unknown corollaries. In particular, we show that, together with German's inequalities for uniform exponents, Schmidt and Summerer's inequalities imply the inequalities by Bugeaud and Laurent and "one half" of the inequalities by Marnat and Moshchevitin. Moreover, we show that our main construction provides a rather simple proof of Nesterenko's linear independence criterion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Izvestiya Mathematics
Izvestiya Mathematics 数学-数学
CiteScore
1.30
自引率
0.00%
发文量
30
审稿时长
6-12 weeks
期刊介绍: The Russian original is rigorously refereed in Russia and the translations are carefully scrutinised and edited by the London Mathematical Society. This publication covers all fields of mathematics, but special attention is given to: Algebra; Mathematical logic; Number theory; Mathematical analysis; Geometry; Topology; Differential equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信