{"title":"一维Liouville - brown运动和Liouville - brown偏移的谱表示","authors":"Xiong Jin","doi":"10.4171/jfg/138","DOIUrl":null,"url":null,"abstract":"In this paper we apply Krein's spectral theory of linear diffusions to study the one-dimensional Liouville Brownian Motion and Liouville Brownian excursions from a given point. As an application we estimate the fractal dimensions of level sets of one-dimensional Liouville Brownian motion as well as various probabilistic asymptotic behaviours of Liouville Brownian motion and Liouville Brownian excursions.","PeriodicalId":48484,"journal":{"name":"Journal of Fractal Geometry","volume":"18 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Spectral representation of one-dimensional Liouville Brownian Motion and Liouville Brownian excursion\",\"authors\":\"Xiong Jin\",\"doi\":\"10.4171/jfg/138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we apply Krein's spectral theory of linear diffusions to study the one-dimensional Liouville Brownian Motion and Liouville Brownian excursions from a given point. As an application we estimate the fractal dimensions of level sets of one-dimensional Liouville Brownian motion as well as various probabilistic asymptotic behaviours of Liouville Brownian motion and Liouville Brownian excursions.\",\"PeriodicalId\":48484,\"journal\":{\"name\":\"Journal of Fractal Geometry\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fractal Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/jfg/138\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fractal Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/jfg/138","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Spectral representation of one-dimensional Liouville Brownian Motion and Liouville Brownian excursion
In this paper we apply Krein's spectral theory of linear diffusions to study the one-dimensional Liouville Brownian Motion and Liouville Brownian excursions from a given point. As an application we estimate the fractal dimensions of level sets of one-dimensional Liouville Brownian motion as well as various probabilistic asymptotic behaviours of Liouville Brownian motion and Liouville Brownian excursions.