{"title":"一维Liouville - brown运动和Liouville - brown偏移的谱表示","authors":"Xiong Jin","doi":"10.4171/jfg/138","DOIUrl":null,"url":null,"abstract":"In this paper we apply Krein's spectral theory of linear diffusions to study the one-dimensional Liouville Brownian Motion and Liouville Brownian excursions from a given point. As an application we estimate the fractal dimensions of level sets of one-dimensional Liouville Brownian motion as well as various probabilistic asymptotic behaviours of Liouville Brownian motion and Liouville Brownian excursions.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Spectral representation of one-dimensional Liouville Brownian Motion and Liouville Brownian excursion\",\"authors\":\"Xiong Jin\",\"doi\":\"10.4171/jfg/138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we apply Krein's spectral theory of linear diffusions to study the one-dimensional Liouville Brownian Motion and Liouville Brownian excursions from a given point. As an application we estimate the fractal dimensions of level sets of one-dimensional Liouville Brownian motion as well as various probabilistic asymptotic behaviours of Liouville Brownian motion and Liouville Brownian excursions.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/jfg/138\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/jfg/138","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Spectral representation of one-dimensional Liouville Brownian Motion and Liouville Brownian excursion
In this paper we apply Krein's spectral theory of linear diffusions to study the one-dimensional Liouville Brownian Motion and Liouville Brownian excursions from a given point. As an application we estimate the fractal dimensions of level sets of one-dimensional Liouville Brownian motion as well as various probabilistic asymptotic behaviours of Liouville Brownian motion and Liouville Brownian excursions.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.