Lin Feng Qiao, Li Mo, Liangjie Mao, LingXiang Zeng
{"title":"油泵机械密封端面磨损机理及泄漏失效分析","authors":"Lin Feng Qiao, Li Mo, Liangjie Mao, LingXiang Zeng","doi":"10.1177/13506501231206696","DOIUrl":null,"url":null,"abstract":"The John Crane 48 V mechanical seal is a long-distance oil transfer pump station shaft end seal; its sealing effect directly affects pipeline production safety. However, it has been found that there is oil leakage at the shaft end of the pump station. In order to explore the oil transfer pump mechanical seal abnormal leakage failure causes, to ensure the safety and stability of production, the end face of the 48 V mechanical seal was analyzed by white light interference and scanning electron microscope technology. The failure mechanism of the 48 V mechanical seal was explored from the perspective of the wear mechanism of moving and stationary rings. Results showed that the wear mechanism of the 48 V mechanical seal stationary ring was mainly abrasive wear, and substantial furrows, bulges, and depressions existed on the wear surface. The material removal mechanism was brittle spalling, and the roughness of the wear surface increased with the increase in wear depth and decreased with the increase in wear average width. Uneven wear occurred on the end face of the stationary ring of the mechanical seal, resulting in the leakage of the sealing medium from the end cover of the mechanical seal. The working condition could be improved by adding a spring compensation device to the stationary ring or increasing the gap between the stationary ring and the shaft sleeve.","PeriodicalId":20570,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology","volume":"80 1","pages":"0"},"PeriodicalIF":1.6000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wear mechanism and leakage failure analysis of the mechanical seal end face of an oil transfer pump\",\"authors\":\"Lin Feng Qiao, Li Mo, Liangjie Mao, LingXiang Zeng\",\"doi\":\"10.1177/13506501231206696\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The John Crane 48 V mechanical seal is a long-distance oil transfer pump station shaft end seal; its sealing effect directly affects pipeline production safety. However, it has been found that there is oil leakage at the shaft end of the pump station. In order to explore the oil transfer pump mechanical seal abnormal leakage failure causes, to ensure the safety and stability of production, the end face of the 48 V mechanical seal was analyzed by white light interference and scanning electron microscope technology. The failure mechanism of the 48 V mechanical seal was explored from the perspective of the wear mechanism of moving and stationary rings. Results showed that the wear mechanism of the 48 V mechanical seal stationary ring was mainly abrasive wear, and substantial furrows, bulges, and depressions existed on the wear surface. The material removal mechanism was brittle spalling, and the roughness of the wear surface increased with the increase in wear depth and decreased with the increase in wear average width. Uneven wear occurred on the end face of the stationary ring of the mechanical seal, resulting in the leakage of the sealing medium from the end cover of the mechanical seal. The working condition could be improved by adding a spring compensation device to the stationary ring or increasing the gap between the stationary ring and the shaft sleeve.\",\"PeriodicalId\":20570,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/13506501231206696\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/13506501231206696","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Wear mechanism and leakage failure analysis of the mechanical seal end face of an oil transfer pump
The John Crane 48 V mechanical seal is a long-distance oil transfer pump station shaft end seal; its sealing effect directly affects pipeline production safety. However, it has been found that there is oil leakage at the shaft end of the pump station. In order to explore the oil transfer pump mechanical seal abnormal leakage failure causes, to ensure the safety and stability of production, the end face of the 48 V mechanical seal was analyzed by white light interference and scanning electron microscope technology. The failure mechanism of the 48 V mechanical seal was explored from the perspective of the wear mechanism of moving and stationary rings. Results showed that the wear mechanism of the 48 V mechanical seal stationary ring was mainly abrasive wear, and substantial furrows, bulges, and depressions existed on the wear surface. The material removal mechanism was brittle spalling, and the roughness of the wear surface increased with the increase in wear depth and decreased with the increase in wear average width. Uneven wear occurred on the end face of the stationary ring of the mechanical seal, resulting in the leakage of the sealing medium from the end cover of the mechanical seal. The working condition could be improved by adding a spring compensation device to the stationary ring or increasing the gap between the stationary ring and the shaft sleeve.
期刊介绍:
The Journal of Engineering Tribology publishes high-quality, peer-reviewed papers from academia and industry worldwide on the engineering science associated with tribology and its applications.
"I am proud to say that I have been part of the tribology research community for almost 20 years. That community has always seemed to me to be highly active, progressive, and closely knit. The conferences are well attended and are characterised by a warmth and friendliness that transcends national boundaries. I see Part J as being an important part of that community, giving us an outlet to publish and promote our scholarly activities. I very much look forward to my term of office as editor of your Journal. I hope you will continue to submit papers, help out with reviewing, and most importantly to read and talk about the work you will find there." Professor Rob Dwyer-Joyce, Sheffield University, UK
This journal is a member of the Committee on Publication Ethics (COPE).