气泡-菱形自相似图的间隙标记定理

Elizabeth Melville, Gamal Mograby, Nikhil Nagabandi, Luke G Rogers, Alexander Teplyaev
{"title":"气泡-菱形自相似图的间隙标记定理","authors":"Elizabeth Melville, Gamal Mograby, Nikhil Nagabandi, Luke G Rogers, Alexander Teplyaev","doi":"10.1088/1751-8121/ad03a4","DOIUrl":null,"url":null,"abstract":"Abstract Motivated by the appearance of fractals in several areas of physics, especially in solid state physics and the physics of aperiodic order, and in other sciences, including the quantum information theory, we present a detailed spectral analysis for a new class of fractal-type diamond graphs, referred to as bubble-diamond graphs, and provide a gap-labeling theorem in the sense of Bellissard for the corresponding probabilistic graph Laplacians using the technique of spectral decimation. Labeling the gaps in the Cantor set by the normalized eigenvalue counting function, also known as the integrated density of states, we describe the gap labels as orbits of a second dynamical system that reflects the branching parameter of the bubble construction and the decimation structure. The spectrum of the natural Laplacian on limit graphs is shown generically to be pure point supported on a Cantor set, though one particular graph has a mixture of pure point and singularly continuous components.","PeriodicalId":16785,"journal":{"name":"Journal of Physics A","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Gaps labeling theorem for the bubble-diamond self-similar graphs\",\"authors\":\"Elizabeth Melville, Gamal Mograby, Nikhil Nagabandi, Luke G Rogers, Alexander Teplyaev\",\"doi\":\"10.1088/1751-8121/ad03a4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Motivated by the appearance of fractals in several areas of physics, especially in solid state physics and the physics of aperiodic order, and in other sciences, including the quantum information theory, we present a detailed spectral analysis for a new class of fractal-type diamond graphs, referred to as bubble-diamond graphs, and provide a gap-labeling theorem in the sense of Bellissard for the corresponding probabilistic graph Laplacians using the technique of spectral decimation. Labeling the gaps in the Cantor set by the normalized eigenvalue counting function, also known as the integrated density of states, we describe the gap labels as orbits of a second dynamical system that reflects the branching parameter of the bubble construction and the decimation structure. The spectrum of the natural Laplacian on limit graphs is shown generically to be pure point supported on a Cantor set, though one particular graph has a mixture of pure point and singularly continuous components.\",\"PeriodicalId\":16785,\"journal\":{\"name\":\"Journal of Physics A\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1751-8121/ad03a4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad03a4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

摘要:由于分形在物理学的一些领域,特别是在固体物理和非周期有序物理以及包括量子信息理论在内的其他科学中出现,我们对一类新的分形型钻石图(称为气泡钻石图)进行了详细的谱分析,并利用谱抽取技术为相应的概率图拉普拉斯算子提供了Bellissard意义上的间隙标记定理。通过归一化特征值计数函数(也称为状态的集成密度)标记Cantor集中的间隙,我们将间隙标记描述为第二个动力系统的轨道,该系统反映了气泡结构和抽取结构的分支参数。一般来说,极限图上的自然拉普拉斯谱是康托尔集上的纯点支持谱,尽管有一个特殊的图是纯点和奇异连续分量的混合谱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gaps labeling theorem for the bubble-diamond self-similar graphs
Abstract Motivated by the appearance of fractals in several areas of physics, especially in solid state physics and the physics of aperiodic order, and in other sciences, including the quantum information theory, we present a detailed spectral analysis for a new class of fractal-type diamond graphs, referred to as bubble-diamond graphs, and provide a gap-labeling theorem in the sense of Bellissard for the corresponding probabilistic graph Laplacians using the technique of spectral decimation. Labeling the gaps in the Cantor set by the normalized eigenvalue counting function, also known as the integrated density of states, we describe the gap labels as orbits of a second dynamical system that reflects the branching parameter of the bubble construction and the decimation structure. The spectrum of the natural Laplacian on limit graphs is shown generically to be pure point supported on a Cantor set, though one particular graph has a mixture of pure point and singularly continuous components.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信