共形横向各向异性流形上非线性磁性Schrödinger方程的反问题

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Katya Krupchyk, Gunther Uhlmann
{"title":"共形横向各向异性流形上非线性磁性Schrödinger方程的反问题","authors":"Katya Krupchyk, Gunther Uhlmann","doi":"10.2140/apde.2023.16.1825","DOIUrl":null,"url":null,"abstract":"We study the inverse boundary problem for a nonlinear magnetic Schrodinger operator on a conformally transversally anisotropic Riemannian manifold of dimension $n\\ge 3$. Under suitable assumptions on the nonlinearity, we show that the knowledge of the Dirichlet-to-Neumann map on the boundary of the manifold determines the nonlinear magnetic and electric potentials uniquely. No assumptions on the transversal manifold are made in this result, whereas the corresponding inverse boundary problem for the linear magnetic Schrodinger operator is still open in this generality.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Inverse problems for nonlinear magnetic Schrödinger equations on conformally transversally anisotropic manifolds\",\"authors\":\"Katya Krupchyk, Gunther Uhlmann\",\"doi\":\"10.2140/apde.2023.16.1825\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the inverse boundary problem for a nonlinear magnetic Schrodinger operator on a conformally transversally anisotropic Riemannian manifold of dimension $n\\\\ge 3$. Under suitable assumptions on the nonlinearity, we show that the knowledge of the Dirichlet-to-Neumann map on the boundary of the manifold determines the nonlinear magnetic and electric potentials uniquely. No assumptions on the transversal manifold are made in this result, whereas the corresponding inverse boundary problem for the linear magnetic Schrodinger operator is still open in this generality.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/apde.2023.16.1825\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/apde.2023.16.1825","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 17

摘要

研究了维数为$n\ \ 3$的共形横向各向异性黎曼流形上的非线性磁性薛定谔算子的反边界问题。在适当的非线性假设下,我们证明了流形边界上的Dirichlet-to-Neumann映射的知识唯一地决定了非线性磁势和电势。在这个结果中没有对横向流形作任何假设,而线性磁性薛定谔算子的相应逆边界问题在这个一般情况下仍然是开放的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inverse problems for nonlinear magnetic Schrödinger equations on conformally transversally anisotropic manifolds
We study the inverse boundary problem for a nonlinear magnetic Schrodinger operator on a conformally transversally anisotropic Riemannian manifold of dimension $n\ge 3$. Under suitable assumptions on the nonlinearity, we show that the knowledge of the Dirichlet-to-Neumann map on the boundary of the manifold determines the nonlinear magnetic and electric potentials uniquely. No assumptions on the transversal manifold are made in this result, whereas the corresponding inverse boundary problem for the linear magnetic Schrodinger operator is still open in this generality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信