N = 2超对称方程的新Hirota双线性方法

Laurent Delisle
{"title":"N = 2超对称方程的新Hirota双线性方法","authors":"Laurent Delisle","doi":"10.1088/1751-8121/ad00ed","DOIUrl":null,"url":null,"abstract":"Abstract This article presents a novel application of the Hirota bilinear formalism to the N = 2 supersymmetric Korteweg–de Vries and Burgers equations. This new approach avoids splitting N = 2 equations into two N = 1 equations. We use the super Bell polynomials to obtain bilinear representations and present multi-soliton solutions.","PeriodicalId":16785,"journal":{"name":"Journal of Physics A","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel Hirota bilinear approach to <i>N</i> = 2 supersymmetric equations\",\"authors\":\"Laurent Delisle\",\"doi\":\"10.1088/1751-8121/ad00ed\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This article presents a novel application of the Hirota bilinear formalism to the N = 2 supersymmetric Korteweg–de Vries and Burgers equations. This new approach avoids splitting N = 2 equations into two N = 1 equations. We use the super Bell polynomials to obtain bilinear representations and present multi-soliton solutions.\",\"PeriodicalId\":16785,\"journal\":{\"name\":\"Journal of Physics A\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1751-8121/ad00ed\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad00ed","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文给出了Hirota双线性形式在N = 2超对称Korteweg-de Vries和Burgers方程中的一种新应用。这种新方法避免了将N = 2方程拆分为两个N = 1方程。利用超贝尔多项式得到双线性表示,并给出多孤子解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel Hirota bilinear approach to N = 2 supersymmetric equations
Abstract This article presents a novel application of the Hirota bilinear formalism to the N = 2 supersymmetric Korteweg–de Vries and Burgers equations. This new approach avoids splitting N = 2 equations into two N = 1 equations. We use the super Bell polynomials to obtain bilinear representations and present multi-soliton solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信