Richard M. Höfer, Amina Mecherbet, Richard Schubert
{"title":"悬架中粒子取向的平均场模型的不存在性","authors":"Richard M. Höfer, Amina Mecherbet, Richard Schubert","doi":"10.1007/s00332-023-09959-1","DOIUrl":null,"url":null,"abstract":"Abstract We consider a suspension of spherical inertialess particles in a Stokes flow on the torus $$\\mathbb {T}^3$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mrow> <mml:mi>T</mml:mi> </mml:mrow> <mml:mn>3</mml:mn> </mml:msup> </mml:math> . The particles perturb a linear extensional flow due to their rigidity constraint. Due to the singular nature of this perturbation, no mean-field limit for the behavior of the particle orientation can be valid. This contrasts with widely used models in the literature such as the FENE and Doi models and similar models for active suspensions. The proof of this result is based on the study of the mobility problem of a single particle in a non-cubic torus, which we prove to exhibit a nontrivial coupling between the angular velocity and a prescribed strain.","PeriodicalId":50111,"journal":{"name":"Journal of Nonlinear Science","volume":"37 2 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Non-existence of Mean-Field Models for Particle Orientations in Suspensions\",\"authors\":\"Richard M. Höfer, Amina Mecherbet, Richard Schubert\",\"doi\":\"10.1007/s00332-023-09959-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We consider a suspension of spherical inertialess particles in a Stokes flow on the torus $$\\\\mathbb {T}^3$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msup> <mml:mrow> <mml:mi>T</mml:mi> </mml:mrow> <mml:mn>3</mml:mn> </mml:msup> </mml:math> . The particles perturb a linear extensional flow due to their rigidity constraint. Due to the singular nature of this perturbation, no mean-field limit for the behavior of the particle orientation can be valid. This contrasts with widely used models in the literature such as the FENE and Doi models and similar models for active suspensions. The proof of this result is based on the study of the mobility problem of a single particle in a non-cubic torus, which we prove to exhibit a nontrivial coupling between the angular velocity and a prescribed strain.\",\"PeriodicalId\":50111,\"journal\":{\"name\":\"Journal of Nonlinear Science\",\"volume\":\"37 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nonlinear Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00332-023-09959-1\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00332-023-09959-1","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Non-existence of Mean-Field Models for Particle Orientations in Suspensions
Abstract We consider a suspension of spherical inertialess particles in a Stokes flow on the torus $$\mathbb {T}^3$$ T3 . The particles perturb a linear extensional flow due to their rigidity constraint. Due to the singular nature of this perturbation, no mean-field limit for the behavior of the particle orientation can be valid. This contrasts with widely used models in the literature such as the FENE and Doi models and similar models for active suspensions. The proof of this result is based on the study of the mobility problem of a single particle in a non-cubic torus, which we prove to exhibit a nontrivial coupling between the angular velocity and a prescribed strain.
期刊介绍:
The mission of the Journal of Nonlinear Science is to publish papers that augment the fundamental ways we describe, model, and predict nonlinear phenomena. Papers should make an original contribution to at least one technical area and should in addition illuminate issues beyond that area''s boundaries. Even excellent papers in a narrow field of interest are not appropriate for the journal. Papers can be oriented toward theory, experimentation, algorithms, numerical simulations, or applications as long as the work is creative and sound. Excessively theoretical work in which the application to natural phenomena is not apparent (at least through similar techniques) or in which the development of fundamental methodologies is not present is probably not appropriate. In turn, papers oriented toward experimentation, numerical simulations, or applications must not simply report results without an indication of what a theoretical explanation might be.
All papers should be submitted in English and must meet common standards of usage and grammar. In addition, because ours is a multidisciplinary subject, at minimum the introduction to the paper should be readable to a broad range of scientists and not only to specialists in the subject area. The scientific importance of the paper and its conclusions should be made clear in the introduction-this means that not only should the problem you study be presented, but its historical background, its relevance to science and technology, the specific phenomena it can be used to describe or investigate, and the outstanding open issues related to it should be explained. Failure to achieve this could disqualify the paper.