Graham Cormode, Zohar Karnin, Edo Liberty, Justin Thaler, Pavel Veselý
{"title":"相对错误流分位数","authors":"Graham Cormode, Zohar Karnin, Edo Liberty, Justin Thaler, Pavel Veselý","doi":"10.1145/3617891","DOIUrl":null,"url":null,"abstract":"Estimating ranks, quantiles, and distributions over streaming data is a central task in data analysis and monitoring. Given a stream of n items from a data universe equipped with a total order, the task is to compute a sketch (data structure) of size polylogarithmic in n . Given the sketch and a query item y , one should be able to approximate its rank in the stream, i.e., the number of stream elements smaller than or equal to y . Most works to date focused on additive ε n error approximation, culminating in the KLL sketch that achieved optimal asymptotic behavior. This article investigates multiplicative (1± ε)-error approximations to the rank. Practical motivation for multiplicative error stems from demands to understand the tails of distributions, and hence for sketches to be more accurate near extreme values. The most space-efficient algorithms due to prior work store either O(log (ε 2 n )/ε 2 ) or O (log 3 (ε n )/ε) universe items. We present a randomized sketch storing O (log 1.5 (ε n )/ε) items that can (1± ε)-approximate the rank of each universe item with high constant probability; this space bound is within an \\(O(\\sqrt {\\log (\\varepsilon n)})\\) factor of optimal. Our algorithm does not require prior knowledge of the stream length and is fully mergeable, rendering it suitable for parallel and distributed computing environments.","PeriodicalId":50022,"journal":{"name":"Journal of the ACM","volume":"29 1","pages":"0"},"PeriodicalIF":2.3000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relative Error Streaming Quantiles\",\"authors\":\"Graham Cormode, Zohar Karnin, Edo Liberty, Justin Thaler, Pavel Veselý\",\"doi\":\"10.1145/3617891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Estimating ranks, quantiles, and distributions over streaming data is a central task in data analysis and monitoring. Given a stream of n items from a data universe equipped with a total order, the task is to compute a sketch (data structure) of size polylogarithmic in n . Given the sketch and a query item y , one should be able to approximate its rank in the stream, i.e., the number of stream elements smaller than or equal to y . Most works to date focused on additive ε n error approximation, culminating in the KLL sketch that achieved optimal asymptotic behavior. This article investigates multiplicative (1± ε)-error approximations to the rank. Practical motivation for multiplicative error stems from demands to understand the tails of distributions, and hence for sketches to be more accurate near extreme values. The most space-efficient algorithms due to prior work store either O(log (ε 2 n )/ε 2 ) or O (log 3 (ε n )/ε) universe items. We present a randomized sketch storing O (log 1.5 (ε n )/ε) items that can (1± ε)-approximate the rank of each universe item with high constant probability; this space bound is within an \\\\(O(\\\\sqrt {\\\\log (\\\\varepsilon n)})\\\\) factor of optimal. Our algorithm does not require prior knowledge of the stream length and is fully mergeable, rendering it suitable for parallel and distributed computing environments.\",\"PeriodicalId\":50022,\"journal\":{\"name\":\"Journal of the ACM\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the ACM\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3617891\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the ACM","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3617891","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Estimating ranks, quantiles, and distributions over streaming data is a central task in data analysis and monitoring. Given a stream of n items from a data universe equipped with a total order, the task is to compute a sketch (data structure) of size polylogarithmic in n . Given the sketch and a query item y , one should be able to approximate its rank in the stream, i.e., the number of stream elements smaller than or equal to y . Most works to date focused on additive ε n error approximation, culminating in the KLL sketch that achieved optimal asymptotic behavior. This article investigates multiplicative (1± ε)-error approximations to the rank. Practical motivation for multiplicative error stems from demands to understand the tails of distributions, and hence for sketches to be more accurate near extreme values. The most space-efficient algorithms due to prior work store either O(log (ε 2 n )/ε 2 ) or O (log 3 (ε n )/ε) universe items. We present a randomized sketch storing O (log 1.5 (ε n )/ε) items that can (1± ε)-approximate the rank of each universe item with high constant probability; this space bound is within an \(O(\sqrt {\log (\varepsilon n)})\) factor of optimal. Our algorithm does not require prior knowledge of the stream length and is fully mergeable, rendering it suitable for parallel and distributed computing environments.
期刊介绍:
The best indicator of the scope of the journal is provided by the areas covered by its Editorial Board. These areas change from time to time, as the field evolves. The following areas are currently covered by a member of the Editorial Board: Algorithms and Combinatorial Optimization; Algorithms and Data Structures; Algorithms, Combinatorial Optimization, and Games; Artificial Intelligence; Complexity Theory; Computational Biology; Computational Geometry; Computer Graphics and Computer Vision; Computer-Aided Verification; Cryptography and Security; Cyber-Physical, Embedded, and Real-Time Systems; Database Systems and Theory; Distributed Computing; Economics and Computation; Information Theory; Logic and Computation; Logic, Algorithms, and Complexity; Machine Learning and Computational Learning Theory; Networking; Parallel Computing and Architecture; Programming Languages; Quantum Computing; Randomized Algorithms and Probabilistic Analysis of Algorithms; Scientific Computing and High Performance Computing; Software Engineering; Web Algorithms and Data Mining