离散周期Schrödinger算符的费米等谱性

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Wencai Liu
{"title":"离散周期Schrödinger算符的费米等谱性","authors":"Wencai Liu","doi":"10.1002/cpa.22161","DOIUrl":null,"url":null,"abstract":"<p>Let <math>\n <semantics>\n <mrow>\n <mi>Γ</mi>\n <mo>=</mo>\n <msub>\n <mi>q</mi>\n <mn>1</mn>\n </msub>\n <mi>Z</mi>\n <mi>⊕</mi>\n <msub>\n <mi>q</mi>\n <mn>2</mn>\n </msub>\n <mi>Z</mi>\n <mi>⊕</mi>\n <mtext>…</mtext>\n <mi>⊕</mi>\n <msub>\n <mi>q</mi>\n <mi>d</mi>\n </msub>\n <mi>Z</mi>\n </mrow>\n <annotation>$\\Gamma =q_1\\mathbb {Z}\\oplus q_2 \\mathbb {Z}\\oplus \\ldots \\oplus q_d\\mathbb {Z}$</annotation>\n </semantics></math>, where <math>\n <semantics>\n <mrow>\n <msub>\n <mi>q</mi>\n <mi>l</mi>\n </msub>\n <mo>∈</mo>\n <msub>\n <mi>Z</mi>\n <mo>+</mo>\n </msub>\n </mrow>\n <annotation>$q_l\\in \\mathbb {Z}_+$</annotation>\n </semantics></math>, <math>\n <semantics>\n <mrow>\n <mi>l</mi>\n <mo>=</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mn>2</mn>\n <mo>,</mo>\n <mtext>…</mtext>\n <mo>,</mo>\n <mi>d</mi>\n </mrow>\n <annotation>$l=1,2,\\ldots ,d$</annotation>\n </semantics></math>, are pairwise coprime. Let <math>\n <semantics>\n <mrow>\n <mi>Δ</mi>\n <mo>+</mo>\n <mi>V</mi>\n </mrow>\n <annotation>$\\Delta +V$</annotation>\n </semantics></math> be the discrete Schrödinger operator, where Δ is the discrete Laplacian on <math>\n <semantics>\n <msup>\n <mi>Z</mi>\n <mi>d</mi>\n </msup>\n <annotation>$\\mathbb {Z}^d$</annotation>\n </semantics></math> and the potential <math>\n <semantics>\n <mrow>\n <mi>V</mi>\n <mo>:</mo>\n <msup>\n <mi>Z</mi>\n <mi>d</mi>\n </msup>\n <mo>→</mo>\n <mi>C</mi>\n </mrow>\n <annotation>$V:\\mathbb {Z}^d\\rightarrow \\mathbb {C}$</annotation>\n </semantics></math> is Γ-periodic. We prove three rigidity theorems for discrete periodic Schrödinger operators in any dimension <math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>≥</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$d\\ge 3$</annotation>\n </semantics></math>: \n\n </p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Fermi isospectrality for discrete periodic Schrödinger operators\",\"authors\":\"Wencai Liu\",\"doi\":\"10.1002/cpa.22161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <math>\\n <semantics>\\n <mrow>\\n <mi>Γ</mi>\\n <mo>=</mo>\\n <msub>\\n <mi>q</mi>\\n <mn>1</mn>\\n </msub>\\n <mi>Z</mi>\\n <mi>⊕</mi>\\n <msub>\\n <mi>q</mi>\\n <mn>2</mn>\\n </msub>\\n <mi>Z</mi>\\n <mi>⊕</mi>\\n <mtext>…</mtext>\\n <mi>⊕</mi>\\n <msub>\\n <mi>q</mi>\\n <mi>d</mi>\\n </msub>\\n <mi>Z</mi>\\n </mrow>\\n <annotation>$\\\\Gamma =q_1\\\\mathbb {Z}\\\\oplus q_2 \\\\mathbb {Z}\\\\oplus \\\\ldots \\\\oplus q_d\\\\mathbb {Z}$</annotation>\\n </semantics></math>, where <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>q</mi>\\n <mi>l</mi>\\n </msub>\\n <mo>∈</mo>\\n <msub>\\n <mi>Z</mi>\\n <mo>+</mo>\\n </msub>\\n </mrow>\\n <annotation>$q_l\\\\in \\\\mathbb {Z}_+$</annotation>\\n </semantics></math>, <math>\\n <semantics>\\n <mrow>\\n <mi>l</mi>\\n <mo>=</mo>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mn>2</mn>\\n <mo>,</mo>\\n <mtext>…</mtext>\\n <mo>,</mo>\\n <mi>d</mi>\\n </mrow>\\n <annotation>$l=1,2,\\\\ldots ,d$</annotation>\\n </semantics></math>, are pairwise coprime. Let <math>\\n <semantics>\\n <mrow>\\n <mi>Δ</mi>\\n <mo>+</mo>\\n <mi>V</mi>\\n </mrow>\\n <annotation>$\\\\Delta +V$</annotation>\\n </semantics></math> be the discrete Schrödinger operator, where Δ is the discrete Laplacian on <math>\\n <semantics>\\n <msup>\\n <mi>Z</mi>\\n <mi>d</mi>\\n </msup>\\n <annotation>$\\\\mathbb {Z}^d$</annotation>\\n </semantics></math> and the potential <math>\\n <semantics>\\n <mrow>\\n <mi>V</mi>\\n <mo>:</mo>\\n <msup>\\n <mi>Z</mi>\\n <mi>d</mi>\\n </msup>\\n <mo>→</mo>\\n <mi>C</mi>\\n </mrow>\\n <annotation>$V:\\\\mathbb {Z}^d\\\\rightarrow \\\\mathbb {C}$</annotation>\\n </semantics></math> is Γ-periodic. We prove three rigidity theorems for discrete periodic Schrödinger operators in any dimension <math>\\n <semantics>\\n <mrow>\\n <mi>d</mi>\\n <mo>≥</mo>\\n <mn>3</mn>\\n </mrow>\\n <annotation>$d\\\\ge 3$</annotation>\\n </semantics></math>: \\n\\n </p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22161\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22161","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 9

摘要

让 Γ = q 1 Z ⊕ q 2 Z ⊕ ... ⊕ q d Z $Gamma =q_1\mathbb {Z}\oplus q_2 \mathbb {Z}\oplus \ldots \oplus q_d\mathbb {Z}$ ,其中 q l∈ Z + $q_l\in \mathbb {Z}_+$ , l = 1 , 2 , ... , d $l=1,2,\ldots ,d$ , 是成对的共素数。让 Δ + V $\Delta +V$ 是离散薛定谔算子,其中 Δ 是 Z d $\mathbb {Z}^d$ 上的离散拉普拉奇,势 V : Z d → C $V:\mathbb {Z}^d\rightarrow \mathbb {C}$ 是Γ周期的。我们证明了离散周期薛定谔算子在任意维度 d ≥ 3 $d\ge 3$ 的三个刚度定理:
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fermi isospectrality for discrete periodic Schrödinger operators

Let Γ = q 1 Z q 2 Z q d Z $\Gamma =q_1\mathbb {Z}\oplus q_2 \mathbb {Z}\oplus \ldots \oplus q_d\mathbb {Z}$ , where q l Z + $q_l\in \mathbb {Z}_+$ , l = 1 , 2 , , d $l=1,2,\ldots ,d$ , are pairwise coprime. Let Δ + V $\Delta +V$ be the discrete Schrödinger operator, where Δ is the discrete Laplacian on Z d $\mathbb {Z}^d$ and the potential V : Z d C $V:\mathbb {Z}^d\rightarrow \mathbb {C}$ is Γ-periodic. We prove three rigidity theorems for discrete periodic Schrödinger operators in any dimension d 3 $d\ge 3$ :

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信