{"title":"基于人工智能的皮肤癌分析、预测与分类研究综述","authors":"Madhavi Latha Pandala, None S. Periyanayagi","doi":"10.12694/scpe.v24i3.2241","DOIUrl":null,"url":null,"abstract":"World Health Organization (WHO) records that skin cancer has vigorously affected people in recent decades. Worldwide, many people are affected by skin cancer, and its affected count will increase yearly. Hence, skin cancer has become a threatening disease. Skin cancer prediction at an earlier time is becoming the higher priority and most challenging task worldwide. A computer-based diagnosis is needed to perform the automatic prognosis of skin cancer. It assists dermatologists in many ways, including the prediction of skin cancer at the earlier stages, easy to diagnose and effective. Nowadays, artificial intelligence based machine learning approaches have been implemented for an early prediction of cancer in the skin through medical images. This paper is focused on a detailed, comprehensive review of skin cancer analysis, forecast, and algorithmic-based procedures for classifying skin diseases. Moreover, this review paper focused on various stages of algorithm approaches for skin tumor detection like pre-processing data, segmenting data, feature selection, and disease classifier. This detailed review of neoplasm diseases like cancer on the skin is done based on machine and deep learning algorithms to help further research.","PeriodicalId":43791,"journal":{"name":"Scalable Computing-Practice and Experience","volume":"25 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis, Prediction and Classification of Skin Cancer using Artificial Intelligence - A Brief Study and Review\",\"authors\":\"Madhavi Latha Pandala, None S. Periyanayagi\",\"doi\":\"10.12694/scpe.v24i3.2241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"World Health Organization (WHO) records that skin cancer has vigorously affected people in recent decades. Worldwide, many people are affected by skin cancer, and its affected count will increase yearly. Hence, skin cancer has become a threatening disease. Skin cancer prediction at an earlier time is becoming the higher priority and most challenging task worldwide. A computer-based diagnosis is needed to perform the automatic prognosis of skin cancer. It assists dermatologists in many ways, including the prediction of skin cancer at the earlier stages, easy to diagnose and effective. Nowadays, artificial intelligence based machine learning approaches have been implemented for an early prediction of cancer in the skin through medical images. This paper is focused on a detailed, comprehensive review of skin cancer analysis, forecast, and algorithmic-based procedures for classifying skin diseases. Moreover, this review paper focused on various stages of algorithm approaches for skin tumor detection like pre-processing data, segmenting data, feature selection, and disease classifier. This detailed review of neoplasm diseases like cancer on the skin is done based on machine and deep learning algorithms to help further research.\",\"PeriodicalId\":43791,\"journal\":{\"name\":\"Scalable Computing-Practice and Experience\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scalable Computing-Practice and Experience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12694/scpe.v24i3.2241\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scalable Computing-Practice and Experience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12694/scpe.v24i3.2241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Analysis, Prediction and Classification of Skin Cancer using Artificial Intelligence - A Brief Study and Review
World Health Organization (WHO) records that skin cancer has vigorously affected people in recent decades. Worldwide, many people are affected by skin cancer, and its affected count will increase yearly. Hence, skin cancer has become a threatening disease. Skin cancer prediction at an earlier time is becoming the higher priority and most challenging task worldwide. A computer-based diagnosis is needed to perform the automatic prognosis of skin cancer. It assists dermatologists in many ways, including the prediction of skin cancer at the earlier stages, easy to diagnose and effective. Nowadays, artificial intelligence based machine learning approaches have been implemented for an early prediction of cancer in the skin through medical images. This paper is focused on a detailed, comprehensive review of skin cancer analysis, forecast, and algorithmic-based procedures for classifying skin diseases. Moreover, this review paper focused on various stages of algorithm approaches for skin tumor detection like pre-processing data, segmenting data, feature selection, and disease classifier. This detailed review of neoplasm diseases like cancer on the skin is done based on machine and deep learning algorithms to help further research.
期刊介绍:
The area of scalable computing has matured and reached a point where new issues and trends require a professional forum. SCPE will provide this avenue by publishing original refereed papers that address the present as well as the future of parallel and distributed computing. The journal will focus on algorithm development, implementation and execution on real-world parallel architectures, and application of parallel and distributed computing to the solution of real-life problems.